
22 XI. Magyar Számítógépes Nyelvészeti Konferencia 
 

 

 

 

Comparison of Distributed Language Models
on Medium-resourced Languages

Márton Makrai

Research Institute for Linguistics of the Hungarian Academy of Sciences
e-mail: makrai.marton@nytud.mta.hu

Abstract. word2vec and GloVe are the two most successful open-source
tools that compute distributed language models from gigaword corpora.
word2vec implements the neural network style architectures skip-gram
and cbow, learning parameters using each word as a training sample,
while GloVe factorizes the cooccurrence-matrix (or more precisely a ma-
trix of conditional probabilities) as a whole. In the present work, we com-
pare the two systems on two tasks: a Hungarian equivalent of a popular
word analogy task and word translation between European languages
including medium-resourced ones e.g. Hungarian, Lithuanian and Slove-
nian.
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1 Introduction

The empirical support for both the syntactic properties and the meaning of a
word form consists in the probabilities with that the word appears in different
contexts. Contexts can be documents as in latent semantic analysis (LSA) or
other words appearing within a limited distance (window) from the word in
focus. In these approaches, the corpus is represented by a matrix with rows
corresponding to words and columns to contexts, with each cell containing the
conditional probability of the given word in the given context. The matrix has
to undergo some regularization to avoid overfitting. In LSA this is achieved by
approximating the matrix as the product of special matrices.

Neural nets are taking over in many filed of artificial intelligence. In natural
language processing applications, training items are the word tokens in a text.
Vectors representing word forms on the so called embedding layer have their own
meaning: Collobert and Weston [1] trained a system providing state of the art
results in several tasks (part of speech tagging, chunking, named entity recogni-
tion, and semantic role labeling) with the same embedding vectors. Mikolov et
al. [2] trained an embedding with the skip-gram (sgram) architecture, that not
only encode similar word with similar vectors but reflects relational similarities
(similarities of relations between words) as well. The system answers analogical
questions. For more details see Section 2.
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The two approaches, one based on cooccurrence matrices and the other on
neural learning are represented by the two leading open-source tools for com-
puting distributed language models (or simply vector space language models,
VSM) from gigaword corpora, GloVe and word2vec respectively. Here we com-
pare them on a task related to statistical machine translation. The goal of the
EFNILEX project has been to generate protodictionaries for European languages
with fewer speakers. We have collected translational word pairs between English,
Hungarian, Slovenian, and Lithuanian.

We took the method of Mikolov et al. [3] who train VSMs for the source
and the target language from monolingual corpora, and collect word translation
by learning a mapping between these supervised by a seed dictionary of a few
thousand items.

Before collecting word translations, we test the models in an independent
and simpler task, the popular analogy task. For this, we created the Hungarian
equivalent of the test question set by Mikolov et al. [2, 4].1

The only related work evaluating vector models of a language other than
English on word analogy tasks we know is Sen and Erdogan [5] that compares
different strategies to deal with the morphologically rich Turkish language. Ap-
plication of GloVe to word translations seems to be a novelty of the present
work.

2 Monolingual analogical questions

Measuring the quality of VSMs in a task-independent way is motivated by the
idea of representation sharing. VSMs that capture something of language itself
are better that ones tailored for the task. We compare results in the monolingual
and the main task in Section 5.4.

Analogical questions (also called relational similarities [6] or linguistic regu-
larities [2]) are such a measure of merit for vector models. This test has gained
popularity in the VSM community in the recent year. Mikolov et al. observe that
analogical questions like good is to better as rough is to . . . or man is to woman
as king is to . . . can be answered by basic linear algebra in neural VSMs:

good− better ≈ rough− x (1)

x ≈ rough− good + better (2)

So the vector nearest to the right side of (2) is supposed to be queen, which
is really the case.

We created a Hungarian equivalent of the analogical questions made publicly
available by Mikolov et al. [2, 4]2.

1 For data and else visit the project page http://corpus.nytud.hu/efnilex-vect.
2 More precisely, we follow the main ideas reported in Mikolov et al. [2] and target the
sizes of the data-set accompanying Mikolov et al. [4].
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Analogical pairs are divided to morphological (“grammatical”) and semantic
ones. The morphological pairs in Mikolov et al. [2] were created in the following
way:

[We test] base/comparative/superlative forms of adjectives; singular/plural
forms of common nouns; possessive/non-possessive forms of common
nouns; and base, past and 3rd person present tense forms of verbs. More
precisely, we tagged 267M words of newspaper text with Penn Treebank
POS tags [7]. We then selected 100 of the most frequent comparative
adjectives (words labeled JJR); 100 of the most frequent plural nouns
(NNS); 100 of the most frequent possessive nouns (NN POS); and 100
of the most frequent base form verbs (VB).

Table 1. Morphological word pairs

English Hungarian
plural singular plural singular

decrease decreases lesznek lesz
describe describes állnak áll

eat eats tudnak tud
enhance enhances kapnak kap
estimate estimates lehetnek lehet

find finds nincsenek nincs
generate generates kerülnek kerül

The Hungarian morphological pairs were created in the following way: For each
grammatical relationship, we took the most frequent inflected forms from the
Hungarian Webcorpus [8]. The suffix in question was restricted to be the last
one. See sizes in Table 2. In the case of opposite, we restricted ourselves to forms
with the derivational suffix -tlan (and its other allomorphs) to make the task
morphological rather then semantic. plural-noun includes pronouns as well.

For the semantic task, data were taken from Wikipedia. For the capital-
common-countries task, we choose the one-word capitals appearing in the Hun-
garian Webcorpus most frequently. The English task city-in-state contains USA
cities with the states they are located in. The equivalent tasks county-center
contains counties (megye) with their centers (Bács-Kiskun – Kecskemét) cur-
rency contains the currencies of the most frequent countries in the Webcorpus.
The family task targets gender distinction. We filtered the pairs where the gen-
der distinction is sustained in Hungarian (but dropping e.g. he – she). We put
some relational nouns in the possessive case (bátyja – nővére). We note that this
category contains the royal “family” as well, e.g. the famous king – queen, and
even policeman – policewoman.

Both morphological and semantic questions were created by matching every
pair with every other pair resulting in e.g.

(
20
2

)
questions for family.
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Table 2. Sizes of the question sets

English Hungarian
# questions # pairs # questions

gram1-adjective-to-adverb 32 992 40
gram2-opposite 812 29 30
gram3-comparative 37 1332 40
gram4-superlative 34 1122 40
gram5-present-participle 33 1056 40
gram6-nationality-adjective 41 1599 41
gram7-past-tense 40 1560 40
gram8-plural-noun 37 1332 40
gram9-plural-verb 30 870 40

capital-common-countries 23 506 20
capital-world 116 4524 166
city-in-state 2467 68
county-center 19
county-district-center 175
currency 30 866 30
family 23 506 20

Table 3. Semantic word pairs

English Hungarian

Athens Greece Budapest Magyarország
Baghdad Iraq Moszkva Oroszország
Bangkok Thailand London Nagy-Britannia
Beijing China Berlin Németország
Berlin Germany Pozsony Szlovákia
Bern Switzerland Helsinki Finnország
Cairo Egypt Bukarest Románia

Table 4. Analogical questions

English Hungarian

Athens Greece Baghdad Iraq Budapest Magyarország Moszkva Oroszország
Athens Greece Bangkok Thailand Budapest Magyarország London Nagy-Britannia
Athens Greece Beijing China Budapest Magyarország Berlin Németország
Athens Greece Berlin Germany Budapest Magyarország Pozsony Szlovákia
Athens Greece Bern Switzerland Budapest Magyarország Helsinki Finnország
Athens Greece Cairo Egypt Budapest Magyarország Bukarest Románia
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3 Word translations with vector models

For collection of word translations, we take the method of Mikolov et al. [3] that
starts with creating a VSM for the source and the target language from mono-
lingual corpora in the magnitude of billion(s) of words. VSMs represent words
in vector spaces of some hundred dimensions. The key point of the method is
learning a linear mapping from the source vector space to the target space su-
pervised by a seed dictionary of 5 000 words. Training word pairs are taken from
among the most frequent ones skipping pairs with a source of target word un-
known to the language model. The learned mapping is used to find a translation
for each word in the source model. The computed translation is the target word
with a vector closest to the image of the source word vector by the mapping.
The closeness (cosine similarity) between the image of the source vector and the
closest target vector measures the goodness of the translation, the similarity of
the source and the computed target word. Best results are reported when the
dimension of the source model is 2–4 times the dimension of the target model,
e.g. 800 → 300.

We generate word translations between the following language pairs:
Hungarian-Lithuanian, Hungarian-Slovenian, and Hungarian-English.

The method provides a measure of confidence for each translational pair,
namely the distance of the vector computed by mapping the source word vec-
tor, and the nearest target word vector. This measure makes a tuning between
precision and recall possible (Table 10). With a higher cosine similarity cut-off
(column cos >), we get word translations for a smaller vocabulary (vocab) with
a higher precision, while lower cosine similarities produce a greater vocabulary
with translations of a lower precision. prec@1 is the ratio of words, for which the
first candidate translation coincides with that provided in the seed dictionary,
prec@5 is the ratio of words with the seed translation in the first 5 candidates.
These are strict metrics, as synonyms of the gold translation count as incorrect.
gold is the number of words with a gold translation in the corresponding part of
the test data.

We follow Mikolov et al. [2] in using least squares of the Euclidean distance
for training, and, surprisingly, cosine similarity for translation generation, which
is the only combination of the two distances that works.

4 Data

4.1 Corpora and vectors

For English, we use vector models downloaded from the home pages of the tools,
while for the medium-resourced languages, we train new models on the corpora
in Table 5, using the tokenization provided by the authors of the corpora.

4.2 Seed dictionaries

Mikolov et al. [3] use Google translate as a seed dictionary. We have been experi-
menting with three seed dictionaries: (1) efnilex12, the protodictionaries collected
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Table 5. Corpora for medium-resourced languages. Word counts are given in billions.

language corpus # words

Lithuanian webcorpus [9] 1.4 B
Slovenian slWaC [10] 1.6 B
Hungarian webcorpus [8] 0.7 B
Hungarian HNC [11] 0.8 B

within the EFNILEX project [12], (2) word pairs collected using wikt2dict with
and without triangulation (See Ács et al. [13], and, for sizes, Table 6), and (3)
dictionaries from the opus collection (Europarl, OpenSubtitles2012 and OpenSub-
titles2013)3. efnilex12 contains directed dictionaries (ranked by the conditional
probability of the (cooccurrence of the) target word conditioned on the source
word).

Table 6. Number of translational word pairs in the seed dictionaries

efnilex12 wikt wikt triang OSub12 OSub13 Europarl

en-hu 83 K 47 K +134 K 97 K 19 K 21 K
hu-lt 152 K 6 K +21 K 11 K 9 K 27 K
hu-sl 235 K 2 K +26 K 63 K 45 K 29 K

5 Results

Throughout the following two sections, these abbreviations will be used: d for
dimension, w for window radius (w = 15 means that (a maximum of) 15 words
are considered on both sides of the word in focus), i for number of training
iterations over the corpus (epochs),m for minimum word count in the vocabulary
cutoff, and n for number of negative samples (in the case of word2vec).

5.1 Analogical questions

For comparing the Hungarian analogical questions to the English ones, we trained
sgram models on the concatenation of HNC and the Hungarian Webcorpus with
d = 300,m = 5 comparing negative sampling to hierarchical softmax (two tech-
niques to avoid computing the denominator of softmax that is a sum with as
many terms as there are words in the embedding) and the effect of subsampling
of frequent words, see [14] for details. In Table 7, it can be seen that we (bellow
the line) get similar results in the Hungarian equivalent of the original tasks

3 http://opus.lingfil.uu.se/
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(Mikolov et al. [14] are above the line) in the morphological questions, while
Hungarian results in the semantic questions are worse. This suggests that the
semantic questions are too hard. This problem has to be investigated further.

Table 7. Comparison of results in word translations to those of Mikolov et al [3]

morph semant total

en [14]
n = 5 61 58 60
n = 15 61 61 61
HS 52 59 55

hu
n = 5 63.0 3419/5430 38.5 269/699 60.2 3688/6129
n = 15 61.9 3359/5430 39.2 274/699 59.3 3633/6129
HS 48.9 2653/5430 22.5 157/699 45.8 2810/6129

5.2 Protodictionary generation

In this section we report our results in Slovenian/Hungarian/Lithuanian to En-
glish protodictionary generation. We take four source embeddings: two Slovenian
ones trained on slWaC, one trained on the Hungarian Webcorpus, and one on
the Lithuanian webcorpus by Zséder et al. [9], all in d = 600. One of the Slove-
nian models is a GloVe one, the other models are cbow models with n = 15 and
w = 10. The target model is always glove.840B.300d from the GloVe site, the
seed dictionary is OpenSubtitles2012. The source (rs), the target (rt) embedding,
or both (rst) was restricted to words accepted by Hunspell. In Table 8 we com-
pare our results (bellow the line) to those of Mikolov et al. [3] (above the line)
with slightly different metaparameters. The vocabulary cutoff m of the source
embedding is specified for each word2vec model we trained.

Table 8. Results in protodictionary collection

prec@1 prec@5

en → sp 33 51
sp → en 35 52
en → cz 27 47
cz → en 23 42
en → vn 10 30
vn → en 24 40

glove-sl → en rs 44.80 63.40
word2vec-sl → en m = 100 rs 41.70 60.40
word2vec-hu → en m = 50 rst 32.80 54.70
word2vec-lt → en m100 rt 21.20 36.50
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Table 9. Example word translations. cos is the cosine similarity of the image of the
source word vector by the learned mapping and the nearest target vector. Words in
the target language are listed in the (descending) order of their similarity to the image
vector.

source word cos translations

öt 0.9101 five six eight three
jó 0.8961 good really too very
de 0.8957 but though even just
bár 0.8955 though but even because
hit 0.8904 faith belief salvation truth
ugyan 0.888 though but even because
vöröshagymát 0.8878 onion garlic onions tomato

Table 10. Trade-off between precision and recall in Hungarian to English word trans-
lation.

cos > vocab gold prec@1 prec@5

0.7 3803 301 68.4% 84.4%
0.6 9967 711 54.7% 74.1%
0.5 12949 958 46.6% 65.6%
0.4 13451 988 45.3% 64.0%

5.3 word2vec, LBL4word2vec and GloVe

We compared word2vec, its modification LBL4word2vec4, and GloVe with two
parameter settings in the two tasks. The two parameter settings were needed
because the default (recommended) values of d, w, i and m are different in the
two architectures, see Table 11 with the more computation-intensive setting in
bold. We trained two models with each architecture on HNC: a small one with

Table 11. Default values of parameters shared by word2vec and GloVe

word2vec GloVe

d 100 50
w 5 15
i 5 25
m 5 10

the less computation-intensive one of the two default values and a big one with
the lesser one (except for using d = 52 in small for historical reasons). For the
number of negative samples, which is specific for word2vec, we use the default

4 https://github.com/qunluo/LBL4word2vec
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n = 5. See results in Table 12. Note that GloVe results could be further improved
by taking the average other the two vectors learned by the model for each word.

Table 12. Comparison of models trained in different architectures Rows within each
model “size” are sorted by precision in semantic task that we consider more relevant
to lexicography than morphology. The total number of questions that do not contain
out-of-vocabulary words is 5514 in morphological questions and 6283 in semantic ones.

morph sem total

sm
a
ll word2vec sgram 49.0% 2703 20.3% 156 45.5% 2859

LBL4word2vec sgram 46.6% 2567 19.4% 149 43.2% 2716
word2vec cbow 49.9% 2751 15.7% 121 45.7% 2872
glove 41.3% 2277 11.1% 85 37.6% 2362

b
ig

word2vec sgram 57.8% 3186 42.0% 323 55.8% 3509
LBL4word2vec sgram 55.5% 3058 36.3% 279 53.1% 3337
glove 58.1% 3206 31.3% 241 54.9% 3447
word2vec cbow 57.8% 3187 30.7% 236 54.5% 3423

5.4 Comparison of results in the two tasks

In Figure 1 we show the results of some Hungarian VSMs in the analogical and
the word translation task plotted against each other. The horizontal axis shows
precision in the semantic analogical questions, while the vertical axis shows pre-
cision (@5) in protodictionary generation to the Google News model5 restricted
to words accepted by Hunspell and using seed pairs collected with wikt2dict. It
can be seen that result in the two tasks are unfortunately uncorrelated.

6 Parameter analysis

6.1 Corpus

Quality In Table 13, we compare on analogical questions models trained on
the Hungarian National Corpus (September 12 snapshot) [11] that is a curated
corpus of Hungarian, and on the Hungarian Webcorpus [8] that is a similarly
sized webcorpus. The numbers suggest that a curated corpus is more suitable
for the analogical task.

Size Table 14 shows how the performance depends on the size of the corpus. It
is clear that a much larger corpus is needed to answer semantic questions.

5 https://code.google.com/p/word2vec/#Pre-trained_word_and_phrase_vectors
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Fig. 1. Precision in monolingual (horizontal axis) vs. bilingual (vertical axis) task

Table 13. Comparison of results on two different corpora. The denominator of each
fraction is the number of questions with all three words known to the vector model,
while the numerator is the number of correct answers for these questions. Parameters:
d = 152, m = 10, i = 5 in both models. For word2vec, w = 5 and n = 5 while for
glove, w = 3. The different window sizes mean that these results are not suitable for
comparing the models just the corpora.

model question type Webcorpus HNC

word2vec
morphological 54.9 2924/5326 51.8 2856/5514
semantic 8.3 40/482 16.0 123/769
total 51.0 2964/5808 47.4 2979/6283

glove
morphological 47.4 2525/5326 48.2 2658/5514
semantic 9.3 45/482 14.4 111/769
total 44.2 2570/5808 44.1 2769/6283

Table 14. The effect of corpus size.

morph sem total

1M 1.8 58/3256 0.0 0/84 1.7 58/3340
2M 6.1 191/3130 0.0 0/60 6.0 191/3190

10M 24.9 986/3954 7.4 8/108 24.5 994/4062
100M 55.1 2530/4594 31.4 37/118 54.5 2567/4712
754M 63.2 3486/5514 49.8 383/769 61.6 3869/6283
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6.2 word2vec

Hierarchical softmax and negative samples We also tried whether hierar-
chical softmax (HS) and negative sampling can be combined to get better result
with either of the techniques. A negative answer can be seen in Table 15 (HNC,
d = 100, w = 5, i = 5,m = 5).

Table 15. Hierarchical softmax (HS) and negative sampling.

morph semant total

cbow hs = 0, n = 5 59.4% 3276/5514 24.1% 185/769 55.1% 3461/6283
cbow hs = 1, n = 0 49.0% 2702/5514 13.9% 107/769 44.7% 2809/6283
cbow hs = 1, n = 5 49.5% 2730/5514 14.3% 110/769 45.2% 2840/6283
sgram hs = 0, n = 5 59.1% 3261/5514 33.6% 258/769 56.0% 3519/6283
sgram hs = 1, n = 0 49.8% 2744/5514 23.1% 178/769 46.5% 2922/6283
sgram hs = 1, n = 5 50.4% 2781/5514 23.1% 178/769 47.1% 2959/6283

6.3 Protodictionaries: Seed dictionary

We compare result obtained in the protodictionary generation task with different
English-Hungarian seed dictionaries in Table 16. The source language model is
always glove.840B.300d6, the target model is also a GloVe model trained on
HNC (d = 300,m = 1, w = 15, i = 25). For details of the seed dictionaries see
Section 4.2.

Table 16. Accuracy of protodictionary generation with different seed dictionaries

seed dictionary prec@1 prec@5

Europarl 17.70% 34.10%
wikt triang 13.10% 25.30%
wikt 12.50% 25.40%
OpenSubtitles2012 10.30% 23.40%
efnilex12 en→hu 10.10% 23.80%
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12. Héja, E., Takács, D.: An online dictionary browser for automatically generated
bilingual dictionaries. In: Proceedings of EURALEX2012. (2012) 468–477
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