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Abstract. Neural machine translation (NMT) has emerged recently as
a promising alternative of standard rule-based or phrase-based statisti-
cal approaches especially for languages which have so far been considered
challenging for the two paradigms. Since Hungarian has long been one of
these challenging languages, it is a natural candidate for neural machine
translation to explore whether this approach can bring some improve-
ment in a task which translation models have so far been unable to
cope with. The paper presents our first results of applying neural mod-
els to English to Hungarian translation and shows that with the right
configuration and data preparation, publicly available NMT implemen-
tations can significantly outperform the previous state-of-the-art systems
on standard benchmarks.
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1 Introduction

Neural machine translation is a relatively young but already very successful ap-
proach in one of the most difficult areas of natural language processing. Recent
results, in particular those at WMT’16 [1] have made the attention of the ma-
chine translation community shift considerably towards neural networks, and it
seems more and more plausible that the field is experiencing a paradigm shift.
After the early rule-based approaches phrase-based SMT has been dominant for
many years but now the new models promise progress even for languages deemed
difficult for standard translation systems. Although some of the main drawbacks
of current neural systems are already widely known, such as the occasional lack
of adequacy, NMT has been reported to work well with rich morphology and
significant word reordering, producing more fluent output [2,3]. This motivates
the present work in an attempt to create an English to Hungarian end-to-end
neural translation system.

The aim of this paper is not so much to give a detailed account of all the sys-
tem components and provide an extensive description of the many experiments
but rather to present a general overview with focus on the best setups and most
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important findings. We compare the performance of a Moses based [4] in house
translation architecture (MT@EC [5]) with neural systems based on two pub-
licly available implementations and report results that even in this early stage
convincingly show that NMT is not only comparable but promisingly better on
the EU domain than earlier phrase-based statistical or rule-based approaches [6]
for the En-Hu direction.

2 Neural Machine Translation

Standard phrase-based statistical machine translation is built around a number
of components, while a(n attention based) NMT system is in principle an end-to-
end encoder-decoder framework to model the entire translation process [7]. The
role of the encoder, which is often implemented as a bidirectional recurrent net-
work, is to summarise the source sentence into a set of context vectors, and the
decoder acts as a recurrent language model to generate a target sentence word
after word by leveraging information from the weighted sum of the context vec-
tors at each step, where the weights are computed by the attention mechanism
[8]. In learning, the whole model is jointly trained to maximise the conditional
probability of a gold standard translation given a source segment from a train-
ing corpus of parallel sentences. Learning is regulated by various optimisation
algorithms with backpropagation.

3 Previous Work

The evolution of neural translation systems has been rapid. In the beginning,
neural networks were only used as a component in a classical SMT system [9,10].
But soon after the success of the end-to-end neural network based translation
system from Montreal University at WMT15 [11], more and more work has been
invested to develop direct neural translation models for several language pairs,
predominantly for Indo-European languages and Chinese [12,13] but some early
results have already been published on for example Arabic as well [14].

At the latest WMT conference, the Edinburgh Neural Machine Translation
System was clearly dominant [15], and since then NMT has already found its way
even into production systems [16,17]. The field is still evolving swiftly and many
techniques have been and are being developed to further improve performance,
some of them alrady being close to standard, such as the attention mechanism or
using subword units to overcome the unknown/rare word problem [18]. Further
attempts have been made to change the basic input (output) unit from the
wordform to the character [19], to better model translation coverage [20], or to
use a more suitable optimisation technique, which instead of maximising the
likelihood of the training data, can take evaluation metrics as loss functions
and aims to minimise expected loss on the training data [21]. Many more new
directions are investigated and there is constant progress with the promise of
offering new solutions to old problems of MT.
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4 System Architecture

Our pilot En-Hu system consists of five basic building blocks (steps). The core
component is the translation module (see Section 4.4), which can be of different
types and used more or less interchangeably within a pre- and post-processing
pipeline. This, however, must eventually be tailored a bit to each of the core
translation modules. In our full fledged neural architecture the components are
the following: i) pre-processing pipeline, ii) configuration frontend to the NMT
toolkits, iii) core NMT module iv) post-processing module, v) evaluation and
visualisation module.

4.1 Experiment management

Finding the optimal settings for all (hyper-)parameters for an NMT system
requires a large number of experiments with a wide scale of different values. In the
NMT toolkit implementations this is not (yet) conveniently supported. Therefore
we have developed a simple Python frontend which supports the setting of all
relevant parameter values in one unified configuration file, which is used by the
core neural training, the pre- and post-processing and the test process at the
same time. This not only makes running experiments with a range of parameter
values simple but also keeps a record of all the settings that define a specific
translation model.

The whole system is managed by two wrapper shell scripts that take the
configuration file and run the processing steps with the parameter settings as
defined therein. One script is responsible for pre-processing and training while the
other for translation (including pre-processing), post-processing and evaluation.

4.2 Solving the rare/unknown word problem

For neural translation models two types of approaches have been proposed to
alleviate the problem that only a limited (50-100k word) vocabulary is allowed for
the model to remain computationally manageable. The first branch is based on
extending the base encoder-decoder model to incorporate external information,
such as alignment information and dictionary look-up for out-of-dictionary words
[22], the second tries to transform the input data into units smaller than a full
word form, thereby constraining the number of possible forms [18]. Our solution
attempts to utilise the advantages of both approaches.

On the Hungarian target side we apply morphological analysis [23] to facil-
itate morphology-aware tokenisation and split the target word forms into lin-
guistically motivated stems and suffixes, 1 and so reduce the number of possible
units. Further reduction is achieved by an extensive placeholder mechanism tai-
lored for each language pair. This mechanism is different from the one used in
the in house MT@EC translation system. In MT@EC, placeholder replacement
1 It is possible to further process this format with the algorithm of [18], but we do not
yet have results for this type of setup.
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is based upon hard alignment information, which is extractable from a standard
phrase-based (Moses) system. In NMT, however, this information is not avail-
able, and so placeholder replacement uses segment level unique identifiers and
language specific mapping tables to find the appropriate target forms.

For the remaining unknown words external information is utilised in the form
of an alignment dictionary generated by a pre-processing step on the parallel
data using the tool fast_align [24]. The source side equivalents of target side
unknown tokens are identified from the “soft” alignment2 based on the attention
weights, potentially constrained by the guided alignment strategy of [25].

4.3 Pre- and Post-processing

Most of the pre-processing steps contain standard transformations on the data,
such as tokenisation with the default Moses tokeniser, some normalisation, seg-
ment filtering by length, truecasing and placeholder replacement. It is possible
to filter out training segments according to the ratio of unknown words but we
have not experienced significant differences in performance by adding this filter
to the pre-processing pipeline. For the unknown word replacement, the alignment
dictionary is generated after the target side morphological split to find better
translation equivalents between English and Hungarian input units. To support
the processing of full documents, sentence segmentation is also implemented in
the workflow.

In neural models it is very easy to support the incorporation of source side
linguistic analysis into the model [26] by simply concatenating the additional
information with the input token representation, creating a “neural equivalent”
of a standard phrase-based factored model. We use the Wapiti toolkit [27] to
provide part-of-speech and chunk labels on the English source side for some
of the experiments (Figure 1). Although performance improvements have been
reported using the output of higher level of linguistic analysis (full parsing) [26],
in a future production environment processing time is critical and full parsing
being prohibitively slow we try to use tools which are sufficiently fast not to
delay the translation time significantly.

raw OJ L 302, 19.10.1989, p. 1. Directive as last amended by Commission Decision
2006/60/EC (OJ L 31, 3.2.2006, p. 24).

pp _oj_num-1|NN ,|PUNCT _num_datum-1|NN ,|PUNCT p.|NN _num-1|CD
.|PUNCT Directive|NNP as|IN last|JJ amended|VBN by|IN Commission|NNP
Decision|NNP _num_inst-1|NN (|-LRB- _ojpage-1|CD )|-RRB- .|PUNCT

Fig. 1. Raw and pre-processed source segment.

The translation output is post-processed to replace unknown tokens using
the soft alignment information and the dictionary, and to insert the target sur-
face forms for the the placeholders. If target side splitting is switched on then

2 Which is in effect a probability distribution over possible tokens.
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target surface forms are generated from stems and suffixes. In the end, the stan-
dard steps of segment recasing and detokenisation restore the final output of
the system, which can be evaluated with BLEU and sentence level METEOR
scores. For detailed investigation of the translation process, the visualisation of
soft alignments is also implemented (Figure 2). In document translation mode
translation memories in TMX format are generated as output.

the regulation
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apply from

_Acc ____date-1 kell .

____date-1
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.

Fig. 2. Soft alignment between source and morpheme split target.

4.4 MT Systems

The baseline system is a Moses-based framework that is currently used in the
MT@EC service at the European Commission. It does not use the most recent
Moses version but in its current setup newer Moses versions give no increase in
translation quality.3 There have been many in house experiments to improve the
En-Hu system in recent years but no significant progress has been made so we
use a fairly basic phrase-based architecture in lack of any better alternative as
our baseline system.

The neural systems are built around two publicly available implementations.
The first one is called Nematus4 [15], originally forked from Kyunghyun Cho’s
DL4MT tutorial repository5, and is a Theano based toolkit using gated recurrent
units (GRU) [28], which supports the output of alignment information, right-
to-left rescoring, subword units and source side linguistic factors. The other is
a Torch implementation6 of an LSTM [29] based network architecture, main-
tained by the HarvardNLP group and SYSTRAN [16] and so is already used

3 The novelty of recent versions is mostly in the support of advanced, more complex
models, which on the one hand cannot be efficiently used in a production environment
and on the other hand do not work better for the En-Hu language pair.

4 https://github.com/rsennrich/nematus
5 https://github.com/nyu-dl/dl4mt-tutorial
6 https://github.com/harvardnlp/seq2seq-attn
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in a production environment. This toolkit offers a wide range of parameter set-
tings and configurations including the use of character level models or external
embeddings, supports linguistic input features as well and comes with a built-in
mechanism for alignment-based unknown word replacement using an external
dictionary.

5 Experiments

5.1 Datasets

To find the best settings and values for the set of parameters that most influ-
ence translation quality it is necessary to run a large numbers of experiments,
each taking significant time to run through. For this and other circumstantial
reasons the initial experiments are run on the DGT-TM public dataset [30], orig-
inally with 2 million segments used for training, 3000 for validation and 1000
for testing. It has turned out, however, that the datasets contains a lot of dupli-
cate segments and filtering them out not only shortens experiments, makes the
model more compact but most importantly has no negative impact on transla-
tion qualittranslation quality. In fact, using only the filtered 1.1 million training
set improved the Nematus-based system considerably (see Section 6).

5.2 Hardware environment

Training neural models requires substantial resources with dedicated hardware.
Our models have been trained on two different architectures, one with NVIDIA
GeForce GTX 980 GPUs with 4GB RAM, which allowed for one single training
per GPU with some of the settings limited to not necessarily the optimal values,
such as minibatch size or vocabulary, although our initial experiments have so
far shown that for this magnitude of training data a larger vocabulary (100k
word) does not lead to performance improvement. The other environment is
provided in the IBM cloud by the CEF eTranslation project and contains 4
powerful servers with dual core Tesla K80 (2x12GB RAM) GPUs, which allow
for at least two trainings and further two test runs in parallel. Training time
is not significantly different on the two architectures, it takes around 2 days to
reach optimal performance on these medium size datasets. Decoding time is also
manageable, with less than one second per segment using the GPU.

5.3 Training Procedure

During training the optimisation algorithm and related hyper-parameters are
pivotal to reach the best performance of the model. Similarly to the Google
NMT research group [17] in our best systems (so far) we use a combination of
the Adam gradient descent optimisation algorithm [31] and Stochastic gradient
descent (SGD) but the exact values always depend on the particular dataset
and language pair, hence there are no globally valid settings for all scenarios.
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On average, Adam quickly converges at around 150k updates when we switch
to SGD starting with a learning rate of 0.1, which we anneal gradually by a
magnitude after a certain number of steps, depending on the actual dataset. On
average, in our case this process could lead to 1 point increase in the BLEU
score.

We have not experimented with dropout7 to avoid overfitting. Dropout is
normally used for limited datasets and we expect it will not be necessary once
full size parallel data can be fed to the systems, which in general contain well
more than 10M segments for most of the EU language pairs.

Ensembles of neural models have been shown to perform better than a single
model8, however, we have not extensively tested them so far. Running an ensem-
ble always requires more resources, which can be a problem in our production
environment so if ensembling is not absolutely necessary a single model can still
be a good compromise.

Table 1. BLEU scores for various En-Hu MT systems.

Model Abbreviation BLEU

0 Baseline phrase-based SMT 23.37
1 First basic neural model NMT-BASE 22.05
2 Neural model with target side split NMT-MORPH 21.94
3 Increased segment length (75) NMT-LENGTH 23.02
4 Hyphenated compound split NMT-SPLIT 24.58
5 Unique training segments NMT-UNIQE 26.11
6 Subword units NMT-BPE 25.95
7 Source side factors NMT-FACTOR 26.13
8 HarvardNLP toolkit base model HNLP 24.90

6 Results

We have run a large number of experiments with many settings and are still
in search of the best models hoping to increase the translation quality further
with better pre-processing or more optimal parameter values. In Table 1 we
summarise the best results of selected models while Figure 3 illustrates how
model performance improves during training. In most of the models, we use a
50k word vocabulary, and a minibatch size of 32.

We note that initially we experimented with a maximal segment length of
50-60, inherited from the phrase-based system. Using a higher value (75-100)
significantly increased the performance of the NMT systems (Model 3) but in-
terestingly had only negligible effect on SMT. The same tendency seems to be
7 Randomly dropping units from the network during training.
8 See eg. [15] but this technique is ubiquitous in all NMT systems.
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Fig. 3. BLEU score vs. number of updates during training.

true for the use of source side factors (Model 7), splitting the hyphenated com-
punds on both source and target side (Model 4) or duplicate segment filtering
(Model 5): they are useful for NMT but almost totally useless for the Moses-based
system (therefore we do not separately report these scores for the SMT system).
Morphology aware tokenization in itself does not give improvement (Model 1
vs. Model 2) but our current implementation is extremely rudimentary without
any disambiguation and with many errors in generation. We expect much better
results from the new processing tools for Hungarian that we are now building
into our system.

Our best model achieves a BLEU score of 26.13 which is about 3 points
higher than the phrase-based baseline. In Figure 4 we illustrate this difference
with sample translations from selected engines together with the reference trans-
lation and the segment level METEOR scores. On a casual inspection the good
quality (and fluency) of the neural translation is striking, and (informal) manual
evaluation tends to prefer the neural translation even in cases where the auto-
matic score favours the phrase-based alternative. In this stage of the project,
there has not yet been rigorouos qualitative evaluation but some early feedback
from professional translators seems to confirm much of the findings of [3]: the
NMT output has better morphology, word order and agreement, and post edit-
ing effort is estimated much lower. It is true, however, that without a large scale
manual evaluation campaign of full size engines it is too early to jump to final
conclusions.
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SRC Ms Peeters, the UWV, the Netherlands, Czech, Danish and German Governments
and the European Commission submitted written observations to the Court.

REF M. A. Peeters, az UWV, a holland, a cseh, a dán, és a német kormány,
valamint az Európai Bizottság írásbeli észrevételeket terjesztett a Bíróság elé.

SMT A ms peeters UWV, Hollandia, a cseh, a dán és a német kormány
0.554 és az Európai Bizottság írásbeli észrevételeket a Bíróság elé.
NMT Peeters úr, az UWV, Hollandia, cseh, dán és német kormány és
0.230 az európai Bizottság írásos észrevételt nyújtott be a bírósághoz.

SRC This does not mean that by regulating access to public infrastructure,
a resource has been transferred (or indeed forgone).

REF Ez nem jelenti azt, hogy a nyilvános infrastruktúrához való hozzáférés
szabályozásával sor kerül forrásátruházásra (vagy valójában -kiesésre).

SMT Ez nem jelenti azt, hogy szabályozása által való hozzáférés,
0.329 infrastruktúra állami forrásnak át (vagy akár negatív).
NMT E nem jelenti az, hogy az állami infrastruktúrához való hozzáférés
0.329 szabályozása révén a forrásokat átruházták (vagy).

SRC On 24 October 2013, the Council adopted Decision 2013/527/CFSP [2]
amending and extending the mandate of the EUSR for the Horn of Africa
until 31 October 2014.

REF A Tanács 2013. október 24-én elfogadta az Európai Unió Afrika szarváért
felelős EUKK megbízatásának módosításáról és 2014. október 31-ig
történő meghosszabbításáról szóló 2013/527/KKBP határozatot [2].

SMT A Tanács 2013. október 24-én elfogadta a 2013/527/KKBP határozat [2],
0.421 amely az EUKK megbízatását az Afrika szarva térségre vonatkozóan

2014. október 31-ig.
NMT A tanács 2013. október 24-én elfogadta az Afrika szarváért felelős
0.917 EUKK megbízatásának módosításáról és 2014. október 31-ig történő

meghosszabbításáról szóló 2013/527/KKBP határozatot [2].

Fig. 4. Sample translations by the different systems.

7 Conclusions and future work

We have presented our first promising results of machine translating English
to Hungarian with neural models. Due to the novelty of this line of work and
technology in our working environment there are limitations in the current setups
which will be soon overcome and more extensive tests on much larger datasets
can be carried out. This will hopefully lead to a machine translation system that
can significantly help human translators at the European Commission, even in
languages where the current MT@EC system cannot offer sufficient support and
is therefore rarely used by the translators.

Neural translation models are robust, flexible and seem to respond more
favourably than phrase-based systems to the changes in parameters of the ex-
periments in many respects; they can utilise linguistic information without in-
troducing much complexity in the model, and seem to capture the properties
of the training data better. We hope that they will lead to a breakthrough in
the translation of difficult language pairs and soon be mature enough to be used
even in our production environments. They are easier to train, customise and
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manage than a Moses based system and can benefit from advances on neural
models from other fields as well. In the multilingual environment of the EC the
possibility of multilingual translation with a single model [32] is a promise which
needs serious consideration.

In the near future we plan to further improve the precision of language depen-
dent pre-processing tools, decrease the vocabulary by targeting named entities
with special pre-processing, further narrow the distance between source and tar-
get by for example adding morphological split for the source side, and set up a
large scale manual evaluation campaign of full size NMT engines.
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