Word embedding-based task adaptation from English to Hungarian

Szántó Zsolt and García Carlos Ricardo Collazos and Farkas Richárd: Word embedding-based task adaptation from English to Hungarian.

[thumbnail of msznykonf_013_287-295.pdf]
Preview
Cikk, tanulmány, mű
msznykonf_013_287-295.pdf

Download (977kB) | Preview

Abstract

In commercial Natural Language Processing (NLP) solutions, we frequently face the problem, that a particular NLP application has to work on several languages. Usually the solution is first developed on a single language – the source language – then it is adapted to the other languages – the target languages . In this paper, we introduce experimental results on English to Hungarian adaptation of document classification tasks. In our setting, only an English training dataset is available and our aim is to get a classifier which works on Hungarian documents. We experimented comparatively with two different approaches for word embedding-based language adaptation methods and evaluated them along with monolingual methods in a sentiment classification and a topic classification dataset.

Item Type: Conference or Workshop Item
Journal or Publication Title: Magyar Számítógépes Nyelvészeti Konferencia
Date: 2017
Volume: 13
ISBN: 978-963-306-518-1
Page Range: pp. 287-295
Event Title: Magyar Számítógépes Nyelvészeti Konferencia (13.) (2017) (Szeged)
Related URLs: http://acta.bibl.u-szeged.hu/58554/
Uncontrolled Keywords: Nyelvészet - számítógép alkalmazása
Additional Information: Bibliogr.: 295. p. ; összefoglalás angol nyelven
Date Deposited: 2019. Jul. 02. 14:36
Last Modified: 2022. Nov. 08. 11:49
URI: http://acta.bibl.u-szeged.hu/id/eprint/59017

Actions (login required)

View Item View Item