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Abstract. While word embeddings have proven to be highly useful in
many NLP tasks, they are difficult to interpret for humans. Sparse word
embeddings are reminiscent of knowledge bases containing words that
are already characterized in sparse forms. In our work, we investigate
to what extent sparse word representations convey knowledge about the
words in knowledge bases. We utilize Hungarian sparse word embeddings
and ConceptNet, a knowledge base that supports Hungarian.
Keywords: sparse word embedding, interpretability, knowledge base,
ConceptNet

1 Introduction

Word embeddings generate low dimensional word representations from large cor-
pora. Each word is represented as a vector of real numbers. Word vectors that
are similar to each other tend to be semantically related which makes word em-
beddings effective in a variety of natural language processing tasks. Even though
word embeddings perform well in these tasks, they are difficult to interpret for
humans. Word embeddings employ dense representations of words, while natu-
ral language phenomena are extremely sparse by their nature. Motivated by this
sparse behaviour, the construction of word embeddings that were made sparse
is getting popular recently [1,2,3,4,5].

Knowledge bases already include words in sparse forms implicitly. The rela-
tions in these knowledge bases can describe how the words are related to each
other by their lexical definition, and also how they are related through com-
monsense knowledge. Thus, we have human interpretable features at hand. This
appealing characteristic of human assembled knowledge representation has al-
ready inspired others to create non-distributional word representations [6].

In our work, we would like to explore the interpretability of the dimensions
of distributed word embeddings. As our first experiment, we examine Hungarian
sparse embedding matrices by assigning each dimension one concept extracted
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from ConceptNet[7], a multilingual knowledge base. One potential application
of these assignments can be knowledge graph expanding.

2 Related Work

The explanatory power of distributional semantic models (DSMs) in terms of
meaning is not clear as they often provide a quite coarse representation of se-
mantic content [8]. There have been proposals for the semantic evaluation of
DSMs, e.g., qvec[9] and bless[10]. The qvec evaluation measure aims to score
the interpretability of word embeddings, a topic close to our research. Dimen-
sions of the word embeddings are aligned with interpretable dimensions – cor-
responding to linguistic properties extracted from SemCor [11] – to maximize
the cumulative correlation of the alignment. Bless is a dataset designed for the
semantic evaluation of DSMs. It contains semantic relations connecting (target
and relatum) concepts as tuples. Thus, bless allows the evaluation of models by
their ability to extract related words given a target concept. The method called
the Thing Recognizer [12] attempts to make Hungarian embedding spaces
interpretable by assigning semantic features to words in a language-independent
manner.

In the following, we briefly introduce ConceptNet, a semantic multilingual
knowledge base. In our work, we extract interpetable features (concepts) from
ConceptNet in order to help exploring the interpretability of the dimensions of
word embeddings.

2.1 ConceptNet

Relation Symmetric Example Assertion

Antonym 3 deep ↔ shallow
HasContext 7 gurl → slang
HasProperty 7 marsh → muddy and moist

IsA 7 eagle → bird
MadeOF 7 ice → water
Synonym 3 bright ↔ sunny

RelatedTo 3 torture ↔ pain
UsedFor 7 science → understand life

Table 1: Extract of relations from ConceptNet 5.

ConceptNet is a semantic multilingual knowledge base describing general
human knowledge collected from a variety of resources including WordNet, Wik-
tionary and Open Mind Common Sense. ConceptNet can be perceived as a graph
whose nodes correspond to words and phrases. The nodes of the semantic net-
work are called concepts and the (directed) edges connecting pairs of nodes are
called relations. The records of the knowledge base are called assertions. Each
assertion associates two concepts – start and end nodes – with a relation in the
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semantic network and has additional satellite information beyond these three
objects; for example, the dataset from where the assertion was obtained (e.g.,
WordNet). Figure 1 provides an example of an assertion found in ConceptNet 5
– the latest iteration of ConceptNet. Relations can be symmetrical, e.g., Syn-
onym and RelatedTo, or asymmetrical, e.g., HasProperty and IsA. An
incomplete list of relations present in ConceptNet 5 can be found in Table 1.

{
” datase t ” : ”/d/ w ik i t i ona ry /en ” ,
” l i c e n s e ” : ” cc : by−sa /4 .0” ,
” sour c e s ” : [{” con t r i bu to r ” : ”/ s / r e sou r c e / w ik i t i ona ry /en ”} ] ,
” weight ” : 1 . 0 ,
” u r i ” : ”/a / [/ r /HasContext / ,/ c/hu/ po l i gon /n/ ,/ c/en/geometry / ] ” ,
” r e l ” : ”/ r /HasContext ” ,
” s t a r t ” : ”/ c/hu/ po l i gon /n” ,
”end ” : ”/ c/en/geometry”

}

Fig. 1: Example assertion from ConceptNet 5. The start and end nodes are con-
nected by an edge labelled rel corresponding to the relation between the nodes.
Assertions feature additional information like dataset which represents the source
of the assertion and weight, the strength of the assertion which is a positive value.

3 Experiments

Our aim is to explore the interpretability of the dimensions of Hungarian em-
bedding matrices by assigning each dimension a human interpretable feature. A
somewhat unnatural characteristic of standardly applied word embeddings (e.g.
word2vec [13] or Glove [14]) is that the learned vectors have non-zero coefficients
everywhere, implying that every word can be characterized with every dimen-
sion at least to a tiny extent. From a human perception point of view this dense
behavior is quite undesired, because for most features we would not like to see
any relation to hold. To approximate the sparse behaviour of natural language
phenomena, we employ embeddings that are turned sparse as a post-processing
step suggested in [4]. Results from other studies and literature argue that sparse
word representations are more interpretable by humans (e.g. word intrusion) and
perform well on downstream tasks (e.g. sentiment analysis) [1,3,2,5,15,4].

The rows of a sparse embedding matrix S, correspond to sparse word vectors
representing words. We call the columns (dimensions) of the sparse embedding
matrix bases. As human interpretable features, we take concepts extracted from
a semantic knowledge base, ConceptNet, and the sparse embedding we employ is
derived from the dense Numberbatch [16] vectors. This way, our goal reformulates
to designating a concept to each base.

We basically deal with a tripartite graph (see Figure 2) with words connected
to bases – corresponding to the columns of the embedding matrix – and concepts,
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Fig. 2: Tripartite graph presenting the connections between embedded words,
bases and concepts. Connections denoted by solid lines are present, our aim is
to recover the relations between bases and concepts (dashed lines).

respectively. A word, w is connected to basei if the ith coordinate of the sparse
word vector corresponding to w is nonzero. Also, w is connected to a concept
c with label l if there exists an assertion in ConceptNet that associates w and
c with the relation l. We are interested in the relations between concepts and
bases (dotted lines).

3.1 Hungarian sparse word embeddings

Numberbatch [16] is an embedding approach combining distributional semantics
and ConceptNet 5.5 using a variation on retrofitting [17]. The Hungarian sparse
word embeddings are derived from dense Numberbatch embeddings related to
Hungarian concepts (i.e., concepts prefixed with /c/hu/). As a side note, the
words present in ConceptNet align much better with the vocabulary provided by
Numberbatch than with other embeddings’ vocabulary. This is because Number-
batch implicitly makes use of words (and their specific forms) from ConceptNet
and any arbitrary embedding would include a vast amount of forms of a single
word since Hungarian is a morphologically rich language.

Sparse embeddings si are derived from dense embeddings xi according to the
objective function

min
D∈C,s

1

2n

n∑

i=1

(
‖xi −Dsi‖22 + λ‖si‖1

)
,

where D is a dictionary matrix of basis vectors with length not exceeding 1. The
regularization constant, λ controls the sparsity of the resulting embeddings si.
As λ increases, the density of the nonzero coefficients in si decreases. In total,
we use four sparsity levels according to λs from {0.2, 0.3, 0.4, 0.5}. Table 2 shows
sparsity of each sparse embedding matrix. We have a vocabulary of 17k words
which are embedded into a vector space of 1000 dimensions.
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λ 0.2 0.3 0.4 0.5

sparsity 99.66% 99.81% 99.88% 99.92%

Table 2: The ratio of zero elements to all the elements from sparse embedding
matrices with λ regularization coefficient.

3.2 Hungarian ConceptNet

We utilize the Hungarian part of ConceptNet 5.5 and ConceptNet 5.6. in our
experiments. Every assertion has a start and end node, which are connected by
a directed labeled edge where the label is specified by the relation between the
nodes. Basically, an assertion is a triplet of (start node, relation, end node). If
the relation is symmetric, the connecting edge is bidirectional. In the following,
we refer to start nodes as (embedded) words and end nodes are regarded as
concepts (which should not be confused with the concepts mentioned in Section
2.1). These end nodes – seen as concepts – will be assigned to the bases of the
sparse embedding matrix.

Fig. 3: Comparison on the number of English and Hungarian concepts that ap-
pear frequently (above frequency) as end nodes in assertions. The y axis shows
the log10 of the number of concepts that are frequent.

For our experiments, we produce the subgraph of ConceptNet which encodes
useful information on Hungarian (embedded) words. It is important to note that
English is a core language of ConceptNet (i.e. the language is admittedly well
supported) while Hungarian is not. First, we take the assertions associating two
Hungarian nodes and to further diversify them, we adopt assertions associating
a Hungarian start node with an English end node. It is worth to expand the set
of concepts with English concepts, because there are significantly more English
concepts that appear a lot as end nodes of assertions i.e. among the popular
concepts there are more English ones (see Figure 3). To avoid redundancy, the
assertions including symmetric relations that connect two Hungarian concepts
are dropped. Instead, these groups of Hungarian words defined by symmetric
relations (eg. synsets via the Synonym relation) are represented by English
end nodes. In other words, the assertions including symmetric relations between
Hungarian and English are kept in order to group together Hungarian concepts
connected by symmetric relations according to their English equivalent. As an
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example the Hungarian synonyms ”ronda”, ”csúnya” and ”ocsmány” are all
connected to the English ”ugly” through a Synonym relation. Instead of working
with the complete graph of these Hungarian words that contains unnecessary
information, we simply make use of the information that they can be grouped
together by the English ”ugly”.

assertion
version

ConceptNet 5.5 ConceptNet 5.6

any → any 28 million 32 million
hu → hu 31984 51819
hu → en 57941 61666
hu → (hu ∨ en) 89925 113485

filtered hu → hu 23844 42403
filtered hu → (hu ∨ en) 81785 104069

Table 3: Summary on the number of assertions in ConceptNet 5.5 and Con-
ceptNet 5.6. The assertion types are listed according to the languages of the
connected nodes. The filtered assertions disregard possible assertions associat-
ing two Hungarian nodes with a symmetric relation.

Altogether, we have a result of 81k and 104k assertions from ConceptNet
5.5 and 5.6, respectively. Further on, we will refer to the resulting subsets of
ConceptNet globally as Hungarian Conceptnet (HCN) and use it in our exper-
iments. The version 5.5 or 5.6 (of HCN) is always specified if required. Table 3
summarizes the number of assertions present in HCN 5.5 and 5.6. For further
purposes, we experiment with end nodes that are with the connecting relation to
reflect the meaning of assertions. We call this approach augmented in terms of
the representation of end nodes – seen as concepts. So the assertion associating
”eb” and ”dog” with the Synonym relation has its start node ”eb” and its end
node is ”dog/Synonym”.

Basically, HCN 5.5 is used for association of concepts to bases and HCN 5.6 is
used for evaluation. All in all, there are 48k and 58k distinct end nodes included
in HCN 5.5 and HCN 5.6., respectively. If we ignore the relations by which end
nodes were augmented we get 44k and 53k different relations. Although relations
may be important in terms of meaning, we may resort to ignoring them to be
able to further group together words according to their connecting concepts.
Ignoring relations is also motivated by assertions like (a fiók, Synonym, jacket),
which presents a case where probably the relation Synonym is wrong between
the word ”a fiók” and ”jacket”. A relation like AtLocation or RelatedTo
would fit better. In general, we use two types representation for concepts (ends
nodes): the ones ignoring relations and the augmented approach.

Overall, there are 26 types of relations present in HCN. Surprisingly, there
are relations for which there are substantially fewer assertions in HCN 5.6 than
HCN 5.5 (see Figure 4). A lot of relations have the same number of assertions
in both versions of HCN. The relation EtymologicallyDerivedFrom is not
present in HCN 5.5 and some of the richest relations include DerivedFrom,
FormOf, RelatedTo and Synonym.
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Fig. 4: Log10 frequency of the assertions in HCN 5.5 and 5.6 according to rela-
tions. The relation EDF is short for EtymologicallyDerivedFrom and ERT
refers to EtymologicallyRefersTo.

3.3 Phases of association

The process of associating a base with a concept is divided into four phases.
First, we produce an adjacency matrix based on HCN 5.5, then we multiply
its transpose with the sparse word embedding matrix. Afterwards, the positive
pointwise mutual information (PPMI) values of the resulting matrix are com-
puted and finally, the association takes place by taking the argmax of the matrix
containing PPMI values. The four phases are detailed below. Figure 5 provides
an overview of the four phases.

I. Produce ConceptNet matrix. Given HCN 5.5 (described in §3.2), we
consider it as a bipartite graph whose two sets of vertices correspond to two
ordered sets containing the start and end nodes of assertions, respectively. The
start nodes are regarded as (possibly embedded) words and the end nodes as
concepts. The bipartite graph is represented as a biadjacency matrix C (which
simply discards the redundant parts of a bipartite graph’s adjacency matrix).
Every word w corresponding to a start node is associated with an indicator
vector vw where the ith coordinate of vw is 1 if w is associated to the ith end
node, 0 otherwise. At this point, words can have two sparse representations: the
vectors coming from sparse word embeddings and the binary vectors provided
by HCN. To differentiate them, we call the former ones embedded vectors and
the latter ones ConceptNet vectors. It is important to note, that it is possible
for an embedded word to lack its ConceptNet vector representation if the word
itself is not present in the set of start nodes. On another note, there are words
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in HCN 5.5 that are not presented in the vocabulary of the embedding; that is,
they do not have embedded vector representations.

II. Compute product. We binarize the nonnegative sparse embedding matrix
S by thresholding it at 0, then we take the product of the transpose of C and
the binarized version of S. The result is a dense matrix A, whose element at the
ith row and jth column equals the number of words the ith concept and the jth
base (from the sparse embedding matrix) appear together.

III. Compute PPMI. To generate a sparse matrix from the dense A matrix,
we compute its positive pointwise mutual information (PPMI) for every element.
PPMI for the ith concept ci and jth base bj is computed as

PPMI(ci, bj) = max
(

0, ln
P(ci, bj)

P(ci)P(bj)

)
,

where probabilities are approximated as relative frequencies of words as follows:
P(ci) is the relative frequency of words connected to the ith concept, P(bj)
takes the relative frequency of words whose jth coefficient in their embedded
vector representation is nonzero and P(ci, bj) is the relative frequency of the
co-occurrences of the words mentioned above. The result is a sparse matrix P
whose columns correspond to bases, and its rows correspond to concepts.

IV. Take argmax. By taking the arguments of the maximum vales of every
column in P we can associate a base with a concept.

Association( sparse word embedding , conceptnet ){
nodes = {( s ta r t , end ) in conceptnet }
C = biadjacency ( nodes )
A = transpose(C) ∗ binarize( sparse word embedding )
P = PPMI(A)
max concepts = argmax(P, max by=columns )
//the ith element is the concept associated with the ith base
return max concepts

}

Fig. 5: The process of associating concepts to bases summarized in pseudocode.

4 Evaluation metrics

To evaluate the associations between bases and concepts, we employ HCN 5.6.
We are interested if the new assertions compared to HCN 5.5 are presented in
the associations (which can be perceived as a link prediction task). We would
like to measure if the prominent words of the ith base (i.e., the words whose
ith embedded coordinate is nonzero) are in relation with the concept associated
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to the ith base according to HCN 5.6 (only new assertions are considered). We
define the set Dbi as the set that contains the prominent words of base bi, i.e.

Dbi = {wj |wj(i) > 0, 1 ≤ j ≤ n}
where wj(i) is the ith coordinate in the embedded vector representation of wj

and n is the size of the vocabulary of the sparse embedding. It is worth to mention
that Dbi only depends on the embedding itself. Furthermore, we define Fbi as
the subset of Dbi that contains words which are present in the new assertions as
start nodes and have a connecting end node to the concept that is associated to
bi, formally

Fbi = {wj |wj ∈ Dbi and (wj , concept(bj)) ∈ N},
where concept(bj) is the concept associated to bi and N contains (start node, end
node) pairs that make a new assertion to HCN 5.6. The following information
retrieval measures are used for evaluation:

Mean Reciprocal Rank The reciprocal rank (RR) of the ith base, bi is

RR(bi) =
1

rank(wFbi
)
,

where wFbi
is the word from Fbi with the highest coefficient in bi, and for a

word, w, rank(w) is the rank of w among Dbi , so that the word with the largest
coefficient in Dbi has a rank of 1, and the word with the smallest coefficient has a
rank of |Dbi |. Mean Reciprocal Rank (MRR) is the mean of the reciprocal ranks
over all the bases.

Mean Precision The precision of base bi is computed as

Prec(bi) =
|Fbi |
|Dbi |

.

This way, mean precision (MR) equals 1
m

∑m
i=1 Prec(bi), where m is the number

of bases.

Mean Average Precision The average precision of base bi is the following:

AvgPrec(bi) =
1

|Dbi |
n∑

k=1

|F k
bi
|

|Dk
bi
| ,

where both F k
bi

and Dk
bi

are cutoffs of Fbi and Dbi , respectively, so that the words
are restricted to the first k words coming from the embedding vocabulary (of
size n). Mean average precision is the mean of average precisions over the bases.

In addition to all the above, we examine these metrics in the light of all the
assertions in HCN 5.5 and 5.6. In this case we only have to alter the definition
of the set Fbi to

F̂bi = {wj |wj ∈ Dbi and (wj , concept(bj)) ∈ N̂},
where N̂ contains (start node, end node) pairs that make an assertion in HCN
5.5 or 5.6, i.e., we let the assertions of both HCN versions to overlap.
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5 Results and Discussion

Based on PPMI values, we map a concept to each base. Some associations can
be inspected in Table 4. The first thing we notice is that English concepts are
much more frequent than Hungarian ones. The proportion of English concepts is
ranging between 98.9% and 100% for all λs. One reason behind this is definitely
that within HCN 5.5 the number of different English concepts is 35k (38k aug-
mented), while the number of Hungarian concepts is 9k (9k augmented). Also,
English concepts are more popular (see Figure 3).

Some concepts associated with bases reflect the dominant words of the bases
(the words that had the highest coefficient in the specific base). However, some
concepts seem to have nothing in common with the dominant words of the asso-
ciated base. This might be because some of the less dominant words of the base
contribute to the PPMI. For example, the concept ”en/accident/Synonym” is
associated with the 10th base of the sparse embedding matrix (λ=0.2) whose
most dominant words include ”személygépkocsi”, ”automobil”, ”autós”, ”kocsi”,
”autó”, however, there are words – like ”baleset”, ”mentőautó”, ”gázol”, ”ütközés”,
”gyorshajtás”, ”ittas vezetés” – with smaller coefficients in the base that have
more in common with the concept itself.

base concept PPMI most dominant words of base

875 en/dehydrated/RelatedTo 7.978 aszalt szilva, dunyha, birsalma,
birs, birskörte

533 en/hard disk/RelatedTo 7.824 szerves, szervesen, farész,
merisztéma, háncsrész

927 en/audacity/RelatedTo 7.690 habar, malter, habarcs, vakolat,
mozsár

243 en/beach/Synonym 7.285 mamusz, pacsker, papucs, vietnami
papucs, strandpapucs

593 en/adult/RelatedTo 7.285 érett, andragógia, felnő, felnőtt,
felnőttképzés

327 en/absinthe/RelatedTo 4.549 odavisz, odaad,idead, átad, ad
15 en/about cardinality/HasContext 4.481 irracionális szám, háromszögszám,

numerikus anaĺızis, másodfokú
függvény, logaritmusfüggvény

431 en/about cardinality/HasContext 4.413 ezik, eszt, aszt, lél, lál
709 en/agape/Synonym 4.248 többé kevésbé, a volánnál, mihelyt,

dagály, egymás
814 en/abscess/Synonym 3.856 spongyabob kockanadrág,

szemérem, rosszban, sárgavállú
amazon, flerovium

Table 4: Association pairs scoring the highest and lowest PPMI values at sparse
embedding with λ = 0.2 using concepts augmented with relation type.

The associations are evaluated on four sparse word embeddings (based on
their regularization constants) with two types of concept sets (with or without
relations). Three evaluation measures connected to information retrieval (MRR,
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MP, MAP) are used which can focus on either the new assertions to HCN 5.6
or all the assertions present in HCN 5.5 and 5.6. Table 5 shows the evaluation
scores. The results of new assertions to HCN 5.6 naturally have very low scores.
This is because, out of the 48k concepts in HCN 5.5, at most 1k is used for the
associations and most of the concepts (end nodes) present in the new assertions
come from the remaining 47k concepts. On average, there is only 35 common
concepts between the concepts coming from the associations and the new asser-
tions to HCN 5.6. Also, we know that there are around 20k more assertions in
HCN 5.6, however this version of HCN introduces 5k assertions with concepts
(end nodes) not present in HCN 5.5.

λ aug MRR MP MAP

0.2
7 0.00009 0 0
3 0.00026 0 0

0.3
7 0.00117 0 0
3 0.00126 0 0

0.4
7 0.00013 0 0
3 0.00121 0 0

0.5
7 0.00113 0.00021 0.00005
3 0.00165 0.00017 0.00003

(a) Evaluation in terms of new as-
sertions to HCN 5.6.

λ aug MRR MP MAP

0.2
7 0.02093 0.00333 0.00487
3 0.02197 0.00334 0.00485

0.3
7 0.03780 0.00812 0.01178
3 0.04086 0.00829 0.01228

0.4
7 0.05440 0.01559 0.01858
3 0.05661 0.01553 0.01963

0.5
7 0.06731 0.02797 0.03090
3 0.06917 0.02573 0.02960

(b) Evaluation on all assertions
available to HCN 5.5 and 5.6

Table 5: Evaluation scores for associations using sparse embeddings with λ reg-
ularization constant, and concepts from HCN 5.5 either including relations or
ignoring them.

We can observe that sparser embeddings (with higher λ values) perform
significantly better in terms of all evaluation metrics. Moreover, embeddings with
lower λ values miss most of the new assertions to HCN 5.6, which results in near
zero scores. A reason for that can be that ”less sparse” embeddings contain too
much noise. Ignoring relations of concepts definitely helps the new assertions in
terms of MP and MAP, although this is not true for all the assertions, generally.
However, the MRR values are consistently better at augmented representations
of concepts: on average the 16th most dominant word of each base (of the sparse
embedding with λ = 0.5) is connected to the associated concept in either HCN5.5
or 5.6. The augmented representation of concepts restricts associations, but gives
more precise results.

Some highlights from the best performing associations can be seen in Table 6.
We can notice that some of the dominant words of specific bases do not actually
form assertions in HCN together with the associated concepts. Thus, the power
of the resulting associations resides in the ability to augment existing knowledge
bases or improve their quality.
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base concept dominant words from base

46 en/association football/RelatedTo labdarúgó, futball, labdarúgás, foci,
focilabda

198 en/athletics/HasContext súlygolyó, súlyemelés, súlyemelő,
súlyú, súly

773 en/dustman/RelatedTo szemetes, hulladék, szemeteskonténer,
szemét, szemetet

139 en/bespectacled/RelatedTo optika, optikus, lencse, szemlencse,
szemüveg

43 en/building material/HasContext kőkemény, mészkő, kőbánya,
homokkő, kő

Table 6: Example for remarkable associations between concepts and bases with
some of the dominant words in the base. Words in bold do not form an assertion
in HCN with the associated concept, making the resulting associations applicable
in knowledge base expanding.

6 Conclusion

The general theme of our study was the interpretability of Hungarian word
embeddings. We experimented with associating a property (concept) for each
column of the embedding matrix. Motivated by the sparse behaviour language
phenomena, we employed sparse word embeddings which provide sparse vectorial
representation for words.

We utilized four Hungarian sparse embeddings provided by Numberbatch.
The concepts were extracted from ConceptNet 5 with Hungarian language in
focus. English concepts were adopted to enrich the set of concepts and because
they were more popular among assertions. The concepts could either be aug-
mented with relations or not. The strategy of association was based on PPMI
values. To measure how the associations reflect the assertions, we introduced
four metrics, namely Mean Reciprocal Rank, Mean Average Reciprocal Rank,
Mean Precision and Mean Average Precision.

Overall, the results confirm the results of [10,9] that word embeddings have
semantic content related to word meaning, and provide a further step towards
identifying such word meanings explicitly. We can conclude that sparser rep-
resentations (with higher λ) perform better in terms of all evaluation metrics,
probably because they contain less noise. The augmented approach of concept
representations seems to have more precise results in terms of ranking, but it
is subject to noise. On the other hand, the non-augmented approach may be
more comprehensive. Also, the results indicate that associations may provide
help in expanding knowledge bases, especially ConceptNet. In our ongoing work
we explore more general forms of word meaning.
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