Ugray Gábor: PoS-tagging and lemmatization with a deep recurrent neural network.
Preview |
Cikk, tanulmány, mű
msznykonf_015_215-224.pdf Download (428kB) | Preview |
Abstract
Neural networks have been shown to successfully solve many natural language processing tasks previously tackled by rule-based and statistical approaches. We present a deep recurrent network with long short-term memory, identical to engines used in machine translation, to solve the problem of joint PoS-tagging and lemmatization in Hungarian and German. Our model achieves comparable or superior results to a state-of-the-art statistical PoS tagger. We are able to enhance the Hungarian model’s performance, as measured on a manually annotated sample unrelated to the initial training corpus, through an additional synthesized dataset.
Item Type: | Conference or Workshop Item |
---|---|
Journal or Publication Title: | Magyar Számítógépes Nyelvészeti Konferencia |
Date: | 2019 |
Volume: | 15 |
ISBN: | 978-963-315-393-2 |
Page Range: | pp. 215-224 |
Event Title: | Magyar Számítógépes Nyelvészeti Konferencia (15.) (2019) (Szeged) |
Related URLs: | http://acta.bibl.u-szeged.hu/58556/ |
Uncontrolled Keywords: | Nyelvészet - számítógép alkalmazása |
Additional Information: | Bibliogr.: p. 223-224. ; összefoglalás angol nyelven |
Date Deposited: | 2019. Jul. 03. 13:25 |
Last Modified: | 2022. Nov. 08. 11:49 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/59087 |
Actions (login required)
![]() |
View Item |