Bálint Csaba and Valasek Gábor and Gergó Lajos: Operations on signed distance functions. In: Acta cybernetica, (24) 1. pp. 17-28. (2019)
Preview |
Cikk, tanulmány, mű
actacyb_24_1_2019_017_028.pdf Download (870kB) | Preview |
Abstract
We present a theoretical overview of signed distance functions and analyze how this representation changes when applying an offset transformation. First, we analyze the properties of signed distance and the sets they describe. Second, we introduce our main theorem regarding the distance to an offset set in (X, || · ||) strictly normed Banach spaces. An offset set of D ⊆ X is the set of points equidistant to D. We show when such a set can be represented by f(x) − c = 0, where c 6= 0 denotes the radius of the offset. Finally, we apply these results to gain a deeper insight into offsetting surfaces defined by signed distance functions.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta cybernetica |
Date: | 2019 |
Volume: | 24 |
Number: | 1 |
ISSN: | 0324-721X |
Page Range: | pp. 17-28 |
Language: | English |
Publisher: | University of Szeged, Institute of Informatics |
Place of Publication: | Szeged |
Event Title: | Conference of PhD students in computer science (11.) (2018) (Szeged) |
Related URLs: | http://acta.bibl.u-szeged.hu/62212/ |
DOI: | 10.14232/actacyb.24.1.2019.3 |
Uncontrolled Keywords: | Számítógépes grafika, Számítástechnika |
Additional Information: | Bibliogr.: p. 27-28. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.02. Computer and information sciences |
Date Deposited: | 2019. Jul. 17. 13:04 |
Last Modified: | 2022. Jun. 21. 08:52 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/59225 |
Actions (login required)
![]() |
View Item |