Simulation Approach for Localizing Roots of Real Coefficients Complex Equation

Sasa Dimitrijevic, Bratislav Dankovic, and Dragan Antic

This paper presents a new approach for solving real coefficients complex equation based on simulation. The procedure is used for n-th order complex equation, in the form:

$$
\begin{equation*}
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\Lambda+a_{1} z^{1}+a_{0} \tag{1}
\end{equation*}
$$

where $a_{i}, i=1, \Lambda, n$ are real coefficients, n is equation order and $z=x+i y$ is a complex variable. The technique relates solving complex equation:

$$
\begin{equation*}
f(x+i y)=0 \tag{2}
\end{equation*}
$$

what can be written in the form:

$$
\begin{equation*}
\operatorname{Re}\{f(x+i y)=0\}+i \operatorname{Im}\{f(x+i y)=0\}=0 \tag{3}
\end{equation*}
$$

The condition (3) is fulfilled if both absolute values of real and imaginary part are equal to zero:

$$
\begin{equation*}
|\operatorname{Re}\{f(x+i y)\}|+|\operatorname{Im}\{f(x+i y)\}|=0 \tag{4}
\end{equation*}
$$

Considering that this approach is used for localization of equation (1) roots, equation (4) model will be:

$$
\begin{equation*}
\varepsilon=\min _{x, y}|\operatorname{Re}\{f(x+i y)\}|+|\operatorname{Im}\{f(x+i y)\}| \tag{5}
\end{equation*}
$$

The x, y values which correspond to minimum will be the roots of equation (1).
Simulation is conducted using block diagram simulation languages (SIMULINK, etc.) where $x=$ time and as a result of simulation value ε for $y=y_{0}=$ const is obtained.

$$
\begin{equation*}
\varepsilon=\min _{y} \min _{x}|\operatorname{Re}\{f(x+i y)\}|+|\operatorname{Im}\{f(x+i y)\}| \tag{6}
\end{equation*}
$$

Repeated simulations for different values of $y=y 0=$ const are performed using MATLAB programming. When the desired accuracy is accomplished, the obtained values $x=\not \mathfrak{x}, y=y_{0}$, will represent one of the equation (1) roots. The procedure is then repeated for different values $y=\mathfrak{y}$. In that manner, all other roots can be localized.

References

[1] Karayanakis N. M., Computer-Assisted Simulation of Dynamic Systems with Block Diagram Languages, CRC Press, Boca Raton, 1993.
[2] Murray-Smith D. J., Continuous System Simulation, Chapman \& Hall, London, 1995.
[3] Kuo F. F. ed., Computer Simulation of Dynamic Systems, Prentice-Hall, New Jersey, 1972.

