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Programming environments which include program development, program analysis and program
debugging tools ([2]) are essential for the acceptance of programming languages as Prolog or other logic
programming languages as a "real" one. Especially testing which is a process of executing a program
with the intend of finding error (see [10]), and debugging which goal is to analyse the program to locate
and fix the detected error (see [6]) are central issues of programming environments.

Research on this topic started with the development of Shapiro’s APD-System ([12]). The algorith-
mic program debugging method introduced by Shapiro can isolate an erroneous procedure if a program
and an input on which it behaves incorrectly is given. Shapiro’s model was originally applied to Prolog
programs to diagnose the following three types of errors: termination with incorrect output, termina-
tion with missing output and nontermination. A major drawback of this debugging method is the great
number of queries put to the user about the correctness of intermediate results of procedure calls.

Many other debugging techniques and tools of Prolog programs were developed. A few of them
base on Shapiro’s algorithm (APROPOS [9], EDS [5], DED [8] and ADAss [1]) or used other methods
(PRESET [14], RD [11], OPIUM [2] and PTP [4]) but the main disadvantage of these systems is that
they can handle only pure Prolog programs. It means that these systems cannot be applied for realistic
programs. For example let us take the following short Prolog program which parses simple arithmetic
expressions and computes the result:

expression(Value) --> term(A), "+", expression(B), {Value is A + B}.
expression(Value) --> term(A), "-", expression(B), {Value is A - B}.
expression(Value) --> term(Value).
term(Value) --> atomicexpression(Value).
term(Value) --> atomicexpression(A), "*", term(B), {Value is A * B}.
term(Value) --> atomicexpression(A), "/", term(B), {Value is A / B}.
atomicexpression(Value) --> number(Value, _).
atomicexpression(Value) --> "(", expression(Value), ")".
digit --> "1"; "2"; "3"; "4"; "5"; "6"; "7"; "8"; "9"; "0".
number(Value, Expo, C, D) :- ’C’(C,Code,E), digit(C,E),

(Expo = 10 -> Value is Code - "0", D=E;
Value is Code * B + A, Expo is B * 10, number(A, B, E, D)).

compute(Value, A, B) :- expression(Value, A, B).

The systems listed above cannot handle the extensions of Prolog used in this program. This paper
describes a new system developed for algorithmic debugging and functional testing of Prolog programs
based on Shapiro’s work . This system is able to find the error in a program containing the following

� Declarations

� Control facilities: if (->), or (�), repeat

� Definit Clause Grammars

� Handling Built-In Predicates

The task of the system is the following:

� Develop a grammar for Prolog. With the help of this grammar parse the program and generate
a tree for the syntax. From the tree produce a prooftree in the programming language C which
produces the graphical representation for the graphical user interface (see Figure 1)

� The modifications of Shapiro’s debugging methods that they can handle the whole special features
of ISO Prolog
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Figure 1: The generated prooftree in main window of the system
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