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The Euclidean 3-matching problem (E3MP) is to form l disjoint triplets from n � l points in the
plane and connect the three points of each triplet by two line segments so that the total length of the line
segments is minimal, see Figure 1.
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Figure 1. A sample 51-point 3MP problem instance (’eil51’ from TSPLIB ) along with its optimal solution.
The vertices are numbered as they appear in the problem file.

The E3MP occurs in some industrial applications; in manual insertion of electronic components
on a printed circuit board, the operations are arranged into close triplets in order to aid the worker in
his task. Certain flexible machines (General Surface Mounter) for the automated insertion of electronic
components have three to eight insertion heads and operate in cycles of component pickups and insertions
with the heads. The throughput of the machine can be maximized by minimizing the length of the inter-
board head movements. A similar problem occurs in the scheduling of an automated assay analysis
instrument (AutoDelphia).

The problem is a special case of the general 3MP, which is NP-complete. The Euclidean problem can
be solved heuristically by standard approaches, like local search heuristics using pairwise interchanges,
simulated annealing, tabu search and genetic algorithm. Several lower bounds can be given for the
problem. By knowing the optimal solution to the problem we can evaluate the quality of the lower
bounds and the upper bound solutions of the heuristic approaches.

The 3MP can be formulated by the following 0-1 Integer Programming Problem:

min

nX
i��

nX
j��

xijcij subject to
�

�

nX
i��

xij �

nX
k��

xjk � �� �j � �� � � � � n�� xij � f�� �g

where the decision variable xij � � if and only if there is an i � j edge present in the solution, and cij
is the cost of the i� j edge.

We find the optimal solution for the E3MP by the well-known branch-and-bound (B&B) technique.
The branch-and-bound method implicitly enumerates all the feasible solutions of the particular combi-
natorial optimization problem under consideration. This is achieved by maintaining an enumeration tree
which has partitions of the solution space in its nodes. The process starts with one node, namely the root,
which represents all the feasible solutions to the problem. During this intelligent search, the branching



operation is used to explore a selected node and to partition the solutions represented by it into its de-
scendant nodes. The effectiveness of the B&B search method lies in the bounding operation, where we
calculate lower bounds (in case of a minimization problem) for the solutions represented in the nodes.
If the lower bound for the solutions of a certain node exceeds a known upper bound of the problem, the
node and thus its whole subtree can be discarded as it cannot contain any better solution than already
known. A good combination of a clever branching operation and a sharp lower bounding operation, aug-
mented with some heuristic method for providing tight upper bounds can give reasonable performance
for hard optimization problems. The task of writing an efficient branch-and-bound algorithm for our
problem is challenging in itself and we discuss a number of design alternatives and their trade-offs in the
study.

We introduce two branching strategies and three bounding operations for the E3MP. The latter include
a lower bound based on the Lagrangian relaxation of the above integer programming formulation, a
sharp problem-specific and a rather trivial lower bound. Both of the branching operations perform the
partitioning by fixing and/or deleting certain edges (variables) in the partial solutions stored along with
the particular node. These operations can use various edge selection rules for the branching and they
can also incorporate automatic fixing and/or deleting of certain type of edges depending on the previous
decisions leading to the partial solution in the particular node. We build several different B&B procedures
from the above mentioned components and complete them with various node and edge selection rules
and upper bound heuristics.

The role and performance of the different components of the B&B procedures is evaluated by empir-
ical comparisons. The test set includes various problem instances, either coming directly from industry,
or picked from TSPLIB, or generated randomly. The best variant is also compared to a public domain
LP-solver and the results show that our procedure has a far better performance. We have also performed
empirical tests on problems with restrictions on the available edges for the solution. These experiments
provide useful information for a better understanding of the structure of the optimal solutions.

Summarizing our work, we have solved a restricted version of a practically relevant NP-complete
graph problem (which is probably also NP-complete). The results show that our method is applicable
for relatively small problems (n � ��) and its performance is superior to existing solving methods. The
optimal solution of the problem is very useful at the evaluation of the lower bounds and the heuristic
approaches to the problem. Furthermore, we suppose, that many of the ideas of our algorithms could be
applied successfully to solve other graph problems.


