Using Object Oriented Techniques at Implementing Compilers

Zoltan Porkolab

Object Oriented Programming became well-accepted technology of Computer Science in the recent
years. Object Oriented Methods of analysis and design are to standardize and supported by CASE tools.
Programming languages - such C++, ADA95 and JAVA - are in everyday use helping the programmer to
implement object oriented techniques with classes, using inheritance, exception handling, etc. In a few
fields of Computer Science, however, Object Orientation is still not a mayor player. In specially, in the
world of compilers, translators, etc. we can see mostly old-fashioned, not object oriented programs. This
is perhaps originated in the event-driven attitude of using finite automaton.

In this article I try to explain another way of writing translators - the object oriented way. In this
case the object structure of the program is driven from the internal data structures of translation. Lexical
tokens are detected by lexer, and passed to the parser as an object. The parser is building a syntax
tree using Predictive Descending Algorithm (Aho, Sethi, Ullman: Compilers. Addison-Wesley, 1986),
recursion was eliminating with while loops. However this syntax tree is containing objects from a certain
object hierarchy. Each node in the tree is an instance of a class corresponding to a certain operator-
group. This way of typing the nodes of syntax tree makes late binding in effect at type checking and
code generation.

Type checking makes function overloading possible. Rules of function argument matching are sepa-
rated in distinct algorithms. A few case of polymorphic function needs special handling. Code generation
also use virtual functions producing ready to compile JAVA source. Exception handling is used not only
to break syntax analysis at error but also to generate warnings. Error and warning information is encap-
sulated in classes and can be caught.

This translator is a part of a real-word project, implemented in JAVA 1.1. In the project 4GL (Super-
NOVA) source code is translated to JAVA (applet) source. The translator is validating the 4GL expres-
sions and generate JAVA code. Since this 4GL is based on interpreter and allows run-time evaluation of
expressions, the class structure of the translator is also a part of the applet. This way the translator is
used in compiling time to check the most of the source and generate static JAVA code, but also activated
in run-time if a certain expression is using run-time evaluation. The project has finished in the last year
and now the translator is ready to use.



