
The History of Software Localization

László Gulyás

There are different possible ways to arrange the developments of programming technology (from
its very beginnings to nowadays’ trends) into one logical and coherent line of evolution. One of these
options is to discuss the subject as a process of increasing software localization. According to this
idea the history of computer science is dominated by the classical divide and conquer rule. That is,
facing the more and more complex problems to solve (which was enabled by the increasing power of
the underlying hardware), programmers needed more and more localization of (concentrated focus
on) their software elements. Whatever trivial this idea may seem at first, it has the distinctive power
to unify different programming techniques and, at the same time, to separate ones which are close to
each other but contain very important underlying conceptual differences.

According to this view, monolithic programs first got divided into separate compilation units
and subroutines within each source file. Later on, the movement of structured programming further
localized the ’behavior’ of the software by introducing the concept of block and made the first step
toward data-localization through user-defined types. The increasing acceptance of the Abstract Data
Type concept has finalized the localization of data (pairing that of code or ’behavior’) by modules
on one hand, and object-orientation on the other. Recently, these concepts have been furthered by
standardization and continuity in time in component architectures. The last step along the pathway
of increased localization, up to now, is represented by autonomous agents (according to the weak
definition of agency), where localisation of code and data is completed by that of its control.

In this paper, we will elaborate on the idea described above, reporting on a survey of program-
ming languages (including C, Pascal, Module-2, Objective-C, C++, Ada, Java). This survey concep-
tualizes the different techniques the surveyed languages use to handle different aspects of software
localization. As a result of this work, we construct a taxonomy of programming languages containing
classes of increasing software localization. We also present concrete, implemented instances for the
defined classes. These examples show that some of the localization aspects span across a variety of
programming languages, while others are rather specific to some environments.

In addition to the classification above, our results contribute to the explanation of the driving
forces behind popular trends of today’s computer science. For example, as sketched above, they
make a clear and logical connection between such techniques as object-orientation, autonomous
agents and component architectures.

40


