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The paper addresses the motion planning problem (MPP) of kinematic systems where the config-
uration space is stratified.

Roughly speaking, the MPP can be defined as a search among all feasible trajectories of the
system that satisfy a desired control objective i.e. to move the system from a known initial state
(or configuration) �� to a desired final state �� . Feasibility means that, along such trajectories, the
system variables identically satisfy the system equations.

In this paper we restrict our attention to kinematic and stratified systems. Typically, such systems
arise in the presence of non-holonomic constraints [4]. The state equation of a kinematic system
reads:
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where � is the state variable,  is the input variable and � � are (sufficiently regular or smooth) vector
fields on�� (	 � !).

The systems considered here are also said to have stratified configuration space, notion introduced
by Goodwine et. al. in [3]. For such systems, the configuration space is divided in strata (set of
intersecting submanifolds of the configuration manifold) such that the equations of motions may
differ for each strata and change discontinuously. We call the bottom stratum the submanifold with
the highest co-dimension.

Legged robotic structures are typical examples for stratified systems where the possible leg con-
tact configurations are defined by constraints. Since these constraints define submanifolds in the
configuration space where the equations of motions are different, one obtains a stratified system.

The main problem arising in the control of such systems is that the bottom startum is not control-
lable. Therefore one has to switch to lower codimension strata to find feasible trajectory between two
points of the bottom stratum. The switch changes in a discontinuous manner the equations of mo-
tions, situation which is not treated by conventional motion planning algorithms working on smooth
configuration spaces. Thus these algorithms must be adapted (extended) to work with stratified sys-
tems.

A general motion planning algorithm, proposed by Lafferriere et al. [5] is used in [3] to solve
the MPP for stratified systems. This algorithm uses piecewise constant inputs but it is imprecise
if the Lie algebra generated by the vector fields � � fails to be nilpotent. (Recall that in this case the
Campbell-Baker-Hausdorff formula can be used to achieve any desired accuracy.) Notice also that the
plannified trajectory may be composed from a prohibitively huge number of pieces and thus difficult
to be realized in practice. Finally, let us note also that the algorithm does not give precise information
about the actual trajectory of the system which can be nevertheless calculated by integrating the state
equation with the plannified input sequence.

Motion planning can be easily solved for a restricted class of kinematic systems which are called
differentially flat [1, 2]. For such systems, the MPP is reduced to a simple interpolation problem in
the space of the flat output where the set of feasible trajectories is unconstrained in the sense that
there is a one-to-one correspondence between sufficiently smooth trajectories of the flat output and
feasible trajectories of the system.

We adapt this latter method to be used for stratified systems. Thus we construct trajectories made
of pieces along which all but one input is zero. This can be done if we connect the initial and final
points in the space of the flat output using the images of the flows associated to the control vector
fields �� in this space. Then the motion planning is reduced to a geometric problem, provided that
the flows can be easily obtained. (This can be made off-line.) Due to the fact that we have direct
influence on the geometry of the trajectory, obstacle avoidance can be also treated explicitly.

The application to the above methods is illustrated and compared using the example of the hexa-
pod (six-legged) robot.
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