
Phoneme Classification Using Kernel Principal Component Analysis

András Kocsor, László Tóth and András Kuba

1. Introduction
In an earlier paper[4] we compared the effect of the linear feature transformation methods Prin-

cipal Component Analysis(PCA), Linear Discriminant Analysis(LDA) and Independent Component
Analysis(ICA) on several learning algorithms. The algorithms compared were TiMBL(the IB1 al-
gorithm), C4.5(ID3 tree learning), OC1(oblique tree learning), Artificial Neural Nets(ANN), Gaus-
sian Mixture Modeling(GMM) and Hidden Markov Modeling(HMM). The domain of the compar-
ison was phoneme classification using a certain segmental phoneme model, and each learner was
tested with each transformation in order to find the best combination. Furthermore, in that paper
we experimented with several feature sets such as filter bank energies, mel-frequency cepstral coef-
ficients(MFCC) and gravity centers. This paper reports on our experiments to extend these inves-
tigations towards nonlinear methods. Namely, we show how the well-known Principal Component
Analysis(PCA) can be non-linearized using the so-called "kernel-idea"[5]. Besides presenting the
"Kernel-idea" we also give formulas both for the original PCA and the Kernel-PCA. In this paper
we thoroughly examine how this nonlinear feature transformation effects the efficiency of several
learning algorithms. As we mentioned previously in our earlier study we experimented with several
feature sets, and we found the best one to be the critical band log-energies. So in this study we use
only this quite traditional technique to extract frame-based features from the speech signal. We also
learned from our previous investigations that from the learning algorithms PCA[2][6] was the most
beneficial for GMM[1] and ANN[1]. Thus, in this paper we present classification results only for
these two methods (apart from those of an HMM recognizer, which are given to serve as a reference
point). Since the crucial point of this study is the Kernel-PCA, we give a brief look at it in this
extended abstract.

2. Feature Space Transformation Methods with Kernels
Before executing a learning algorithm, additional vector space transformations may be applied on

the extracted features. The role of these methods is twofold. Firstly they may improve classification
performance, and secondly they may also reduce the dimensionality of the data. This is due to the
fact that these techniques search for a transformation which emphasizes more important features and
supresses or even eliminates less desirable ones.

2.1 Linear Feature Space Transformation Methods
Without loss of generality we will assume that the original data set lies in ���, and that we

have + elements ��� � � � ��� in the training set and , elements ��� � � � ��� in the testing set. The fea-
ture transformation methods in many cases require certain preprocessing steps, which usually mean
simple linear transformations. The results of this preprocessing step will be denoted by �� �� � � � � ���
and ���� � � � � ��� for the training and testing vectors, respectively. After applying a feature space
transformation method for the preprocessed data, the new data set lies in ��	 �! � 	�, the trans-
formed training and testing vectors being denoted by � ��� � � � ��

�
� and ���� � � � ��

�
� respectively. With

the linear feature space transformation methods, we search for an optimal (in some cases orthogo-
nal) linear transformation ��� � ��	 of the form ��� � ������ � 
 ��� � � � � +�, noting that the
precise definition of optimality can vary from method to method. The column vectors � �� � � � � ��
of the 	�! matrix � supposed to be normalized. These algorithms use various objective functions
-�� � ��� � �� which serves as a measure for selecting one optimal direction (i.e. a new base
vector). Usually, linear feature space transformation methods search for ! optimal directions. Al-
though it is possible to define functions that measure the optimality of all the ! directions together,
we will find the directions of the optimal transformations one-by-one, employing the - measure for
each direction separately. One, but quite heuristic way of this is to look for unit vectors which form
the stationary points of -��. Intuitively, if larger values of -�� indicate better directions and the cho-
sen directions needs to be independent in some ways, then choosing stationary points that have large
values is a reasonable strategy.

2.2. Kernel Transformation Methods
In this subsection the symbols � and � denote real vector spaces that might as well be finite of

infinite in dimension. Also, we suppose to have a mapping � � ��� � �, which is not necessarily
linear, and ������ is either finite or infinite. Furthermore, we suppose to have given an algorithm� ,

64



with its input formed by preprocessed training points ���� � � � � ��� of the vector space ���. (In our case
this algorithm is the PCA.) The output of the algorithm � is a linear transformation �� � � ��	,
where both the degree of the dimension reduction (represented by !) and the 	 � ! transforma-
tion matrix � are determined by the algorithm itself. We will denote the transformation matrix �
resulting for the training data by ������ � � � � ����.

The goal of the nonlinearization methods is to transform the training vectors into a point set in
� by a mapping �, and instead of the original ones in ���, we apply the algorithm � on these trans-
formed points in�. Thus, employing the algorithm� on the input elements ���� ��� � � � ������� 
 �
we gain a linear trasformation � � � � � . Similarly as before, we will denote the matrix of the re-
sulting linear mapping � with ��������� � � � ��������. Since � is not linear in general, the composite
transformation � Æ� of � and � will not necessarily be linear either.

In the case of the Kernel transformation methods the algorithm � is turned into an equivalent
algorithm � � for which the following holds: ������ � � � � ���� � � ������ ���� � � � � ���� ���� � � � � ���� ����,
for arbitrary ���� � � � � ���. This will, of course, hold in � too, that is: ��������� � � � �������� �
� ���������������� � � � � �������������� � � � � ��������������, for arbitrary ������� � � � �������. Thus,
the point of the kernel methods is to form an algorithm � �, which is equivalent to � , but its inputs
are the dot products of the inputs of � .

The complexity of the linear PCA(�) is a non-linear function of the dimensionality of the input
vectors. Thus if ������ is much larger than 	, then the corresponding � � algorithm may become
practically infeasible. This problem can be alleviated if we have a low-complexity (for example
linear) Kernel function .�� � ��� � ��� � �� for which ��������� � .������ ��� 
 ���. In
this case the value of ������������� can also be computed with few (for example *�	�) operations,
even if the dimension of ������ and ������ are infinite. In practice, however, we usually face the
problem just the opposite way: given a .�� � ��� � ��� � �� functional as Kernel, we are looking
for a mapping � for which ��������� � .������ ��� 
 ���. There are many good publications
about the proper choice of the Kernel functions, and also about their theory in general[5].

In our studies we employed the following Kernels: .������ �
�
���

��
� � � � 
 �� and

.������ � ���
���� ��/�� � � � � 
 ��� Thus, after choosing a Kernel function the only thing left

is to take the � � version of the algorithm and replace the input elements ���� ���� � � � � ��
�
� ���� � � � � ��

�
� ���

with the elements .����� ����� � � � � .����� ����� � � � � .����� ����� The algorithm that results from this sub-
stitution can perform the PCA transformation with practically acceptable complexity, even in a space
infinite in dimension. This transformation together with a properly chosen Kernel function results in
the non-linear feature space transformation, i.e. Kernel-PCA.

2.3. Steps of the Methods In the following sections the discussion of the methods PCA and
Kernel-PCA will be decomposed into three steps:

	 Preprocessing Step Describes the preprocessing that might be required by the method.

	 Transformation Step Here we derive the algorithms themselves.

	 Transformation of Test Vectors Here we discuss that, having obtained a transformation based
on the training vectors, what kind of processing it implies on the test vectors.

3. Principal Component Analysis Preprocessing Step:

	 Centering: We shift the original sample set ��� � � � ��� with its mean �, to obtain a set
���� � � � � ���, with a mean of �: ��� � �� � �� � � � � ��� � �� � �� � � +��

��
��� ���

Transformation Step:
Normally in PCA -��� is ����/��� �� 
 ��� � ����� where � is the sample covariance matrix
for the standardized data �� � +��

��
��� �����

�
� �� Practically speaking, ����/��� defines -���

as the variance of the ����� � � � � ���� n-dimensional point-set projected onto the vector �. Therefore
this method prefers directions having a large variance. It can be shown that stationary points of
-��� correspond to the right eigenvectors of the sample covariance matrix � where the eigenval-
ues form the corresponding function values. Thus it is worth defining PCA based on the station-
ary points where the function -�� has dominant values. If we assume that the eigenpairs of � are
���� 0��� � � � � ���� 0�� and 0� � � � � � 0�, then the transformation matrix � will be ���� � � � � ���,
i.e. the eigenvectors with the largest ! eigenvalues. Since the sample covariance matrix � is sym-
metric positive semidefinite, the eigenvectors are orthogonal and the corresponding real eigenvalues
are nonnegative. After this orthogonal linear transformation the dimensionality of the data will be !.
It is easy to check that the sample ��� � ������ � 
 ��� � � � � +� represented in the new orthogonal

65



basis will be uncorrelated, i.e. the covariance matrix� � of it is diagonal. The diagonal elements of� �

are the ! dominant eigenvalues of �. In our experiments, ! (the dimensionality of the transformed
space) was chosen to be the smallest integer for which �0� � � � � � 0	�/�0� � � � � � 0�� 1 ��


holds. Note that there are many other alternatives, however, for finding a reasonable !.
Transformation of test vectors:
For an arbitrary test vector � the transformation is � � � ����� where �� denotes the preporecessed �.

4. Formulas for Kernel-PCA Having chosen a proper . Kernel function for which .����� �
���������� ��� 
 ��� holds for a mapping � � ��� � �, we now give the LDA transformation
in�.
Preprocessing Step:

	 Kernel Centering: We shift the data ������ � � � ������ with its mean ��, to obtain a set
������� � � � � ������ with a mean of �: ������ � ����� � ��� � � � � ������ � ����� �
��� �� � �

�

��
��� ������

Transformation Step:

We employed the following measure in � : -
����� � ���

���/���� � 
 � � ���� where ���

�� +��
��

���
������������

�� is the covariance matrix of the sample ������� � � � � ������. Analogously

to PCA, we define Kernel-PCA based on the stationary points of - �����, which are given as the
eigenvectors of the symmetric positive semidefinite matrix � ��. Because of the special form of ���

we can suppose that � �
��

��� 2�
������� The following formulas give - ����� as the function of 2�

and .�������

-
����� �

���
���

���
�

���
��� 2�

������
�
�
�

��
���

��� 2�
������

�
���

��� 2�
�������

����
��� 2�

������
� �

�� �
�
	

��	
���

��	���
� (3)

where7 	
��
�� �

�
�����

� �
�
�
�

��
��������

�
���

���	��
�
�
�

��
��� �����

��
�

.�����	��
�
�
�

��
��� �.�����	� � .��������

�
� �

��

��
���

��
��� .�������� From differentiating - ����

with respect to � we get that the stationary points are the solution vectors of the general eigenvalue
problem �

�
	

��	
��� � 0	

���, which in this case is obviously equivalent to the problem �
�
	

��� �

0�� Furthermore, since .�����	� � .��	���� and8 �� �
�
	

��� � �
�
��� � �, the matrix �

�
	

��

is symmetric positive semidefinite, and thus its eigenvectors are orthogonal and the corresponding
real eigenvalues are non-negative. Let the ! positive dominant eigenvalues of �

�
	

�� be denoted by
0� � � � � � 0	 1 � and the correcponding normalized eigenvectors by � �� � � � ���. Then the
orthogonal matrix of the transformation we need can be calculated as below.

��� ��

�
� 
+0�

��
���

2�� ������� � � � �
� 
+0	

��
���

2	� ������

�
� (4)

where the factors �/
 
+0 are needed to keep the columnvectors of � �� normalized.

Transformation of Test Vectors:
Let � be an arbitrary test vector. After preprocessing ���� we get that ����� � ���� � ��. Then

�� � ���
� ����� ��

�
� 
+0�

��
���

2�� ��� � � � �
� 
+0	

��
���

2	� ��

��
� (5)

where �� � ������
� ����� � .�������

�
�
�

��
��� �.������� � .�������

�
� �

��

��
���

��
��� .�����
��

In our experience the strategy for obtaining a suitable ! was the same as in PCA.

7Schölkopf et al. give�
�� in a matrix form using additional matrices. Our formula, however, turned out to be easier to code,

and resulted in a more effective program.
8Here we temporarily disregard the constraint � �� �.

66



References

[1] Alder, M. D. Principles of Pattern Classification: Statistical, Neural Net and Syntactic Methods
of Getting Robots to See and Hear, http://ciips.ee.uwa.edu.au/˜mike/PatRec, 1994.

[2] Battle, E., Nadeu, C. and Fonollosa, J. A. R. Feature Decorrelation Methods in Speech Recog-
nition. A Comparative Study. In Proceedings of ICSLP’98, 1998.

[3] Kocsor, A., Kuba, A. Jr. and Tóth, L. An Overview of the OASIS speech recognition project, In
Proceedings of ICAI’99, 1999(in press).

[4] Kocsor, A., Tóth, L., Kuba, A. Jr., Kovács, K., Jelasity, M., Gyimóthy, T. and Csirik, J. A
Comparative Study of Several Feature Transformation and Learning Methods for Phoneme Clas-
sification submitted to International Journal of Speech and Technology.

[5] Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Müller, K., Rätsch, G. and Smola, A. J.
Input Space vs. Feature Space in Kernel-Based Methods, IEEE Transactions on Neural Networks,
1999(in press).

[6] Tipping, M. E. and Bishop, C. M. Probabilistic Principal Component Analysis, Technical Re-
port NCRG/97/010, Neural Computing Research Group, Aston University, Birmingham, United
Kingdom, 1997.

67


