
Application-level semi-on-line monitoring of VisualMP applications on clusters
of workstations

Norbert Podhorszki

A new application-level, software tracing monitor is designed and implemented for the VisualMP
graphical parallel programming environment to support semi-on-line monitoring of message-passing
programs in heterogeneous environments. We present the design aspects and implementation issues
of the monitor.

VisualMP is a graphical programming environment integrating several tools to support the life-
cycle of building parallel applications. Its major goal is to provide an easy-to-use, integrated set
of programming tools for development of general message-passing applications to be run in het-
erogeneous computing environments. Its main benefits are the visual interface to define all parallel
activities in the application, the syntax independent graphical definition of message passing instruc-
tions, full support of compilation and execution on heterogeneous environment and the integrated use
of the debugger and performance visualiser. Tools of the VisualMP program development environ-
ment are the GRAPNEL graphical parallel programming language, GRED graphical editor to write
parallel applications in GRAPNEL, the GRP2C pre-compiler to produce the C code with PVM or
MPI function calls from the graphical program, the DIWIDE distributed debugger, the PROVE exe-
cution and performance visualisation tool and the GRM distributed monitor. For detailed overview
of the tools of VisualMP, see [1] and [2]. PROVE is presented in [4].

We believe that post-mortem analysis of long traces is not a practical way to evaluate and improve
an application. When several millions of events are visualised at once no one can effectively use it
to focus on performance problems. Moreover, a post-mortem visualiser is not capable of visualis-
ing very large trace data. Practical ways of performance evaluation of long-running programs can
be on-line visualisation, presentation of statistics for the whole execution and the use of automatic
performance analysis tools. Having already a trace visualiser we decided to explore the possibilities
of the first two methods, keeping in mind the possible use of automatic tools in the future.

In off-line monitoring, trace events are stored in local or global storages (memory and files) and
are processed after execution. In on-line monitoring trace events are sent immediately to a tool that
processes (visualises or evaluates) them. Instead of sending each individual trace event to the tool,
events can be buffered in local storage and collected into a global trace only when they are needed for
processing. We call this method semi-on-line monitoring (and visualisation). One end of this method
is off-line monitoring (i.e. buffering is used and traces are collected only when the application is
finished). The other end of this method is on-line monitoring (no buffer is used).

In order to support the examination of long running or cyclic applications PROVE is modified
for semi-on-line visualisation. For this purpose a new distributed monitor - GRM - was designed and
developed that supports trace collection and provides a consistent global time reference at any time
during execution. During execution the user can force trace collection at any time and events locally
buffered until that time are collected by the monitor and the trace is presented in PROVE. Collection
can be started either by the user, the application itself (with a special instrumentation function call),
regularly by the visualisation tool or the debugger tool.

The monitoring is event-driven, both trace collection and counting are supported. The collection
is fully software tracing and the instrumentation method is direct source code instrumentation. For a
classification of monitoring techniques see [3]. The direct source code instrumentation is the easiest
way of instrumentation. Since VisualMP keeps in hand the whole cycle of application building
and source instrumentation is supported graphically we chose this option. The GRP2C precompiler
inserts instrumentation function calls into the source code and the application process generates the
event trace. Both trace collection and statistics are supported by the same monitor and the same
instrumentation of the application. Trace collection is needed to give data to PROVE for execution
and performance visualisation. Statistics have less intrusion to the execution by generating fixed
amount of data and they support initial evaluation of long-running programs.

The main goals in the design of a new monitor were strongly related to the VisualMP environ-
ment. They were:

1. Support of monitoring and visualisation of programs on GRAPNEL level. 2. It is part of an
integrated development environment. 3. Portability. Use on heterogeneous clusters on UNIX operat-
ing systems (Irix, Solaris, Linux, DEC-Alpha, etc.) 4. Semi-on-line monitoring and visualisation to

83



support - evaluation of long-running programs, - debugger in VisualMP with execution visualisation.
5. Dynamic instrumentation to support - evaluation of long-running programs, - automatic perfor-
mance analysers integrated into VisualMP in the future. 6. Both statistics and event trace collection
should be supported. 7. Trace data should not be lost at program abortion. We want to visualise the
execution to the point of abortion. 8. The execution of the application and the development environ-
ment should be separate. Thus, an application can be developed on a local host while it is executed
on a remote cluster (and it is visualised semi-on-line on the local host).

The above goals simplified the design of the monitor in several aspects. The tight integration of
GRM into VisualMP enabled us to put several functionalities of a stand-alone monitoring tool into
other tools of VisualMP. For example, - instrumentation is naturally done in the graphical editor, -
trace events are generated only by instrumentation function calls in the application processes not by
the monitor - trace events of different processes are not sorted into time order since the preprocessing
phase in PROVE does not need a globally sorted trace, - local monitors are started on the hosts
defined by the environment, - the monitor is started and stopped by GRED, - the monitor does no
bookeeping of processes, it does not even recognise the finish of the application.

The design goals gave constraints on the monitor, too. The high portability requirement forced
us to use only standard UNIX solutions for every problems related to monitoring. Operating sys-
tem or hardware specific solutions, counters or performance analysis tools must have been avoided.
Fortunately, keeping us only on GRAPNEL level we could implement GRM in standard UNIX.

If trace events generated by a process are stored in local memory they can be lost when the
process aborts. GRM should use shared-memory segments for trace storage in order to keep trace
events accessible to VisualMP to the last point of execution. The use of shared-memory segments
makes also possible the dynamic instrumentation of the program without modifying the application
program code. However, this solution increases the intrusion since a new race condition is introduced
by the use of a shared object.

Three basic problems arise when an application executed in a distributed environment is moni-
tored. They are clock synchronisation, handling large amount of trace data and intrusion. This paper
discuss these problems and the answers of GRM for the challenges.

References

[1] P. Kacsuk, G. Dózsa, T. Fadgyas, and R. Lovas: "GRADE: a Graphical Programming Environ-
ment for Multicomputers", Journal of Computers and Artificial Intelligence, Slovak Academy
of Sciences, Vol. 17, No. 5, 1998, pp. 417-427

[2] P. Kacsuk: "Macrostep-by Macrostep Debugging of Message Passing Parallel Programs",
PDCS’98, Los Angeles, 1998, pp. 527-531

[3] J. Chassin de Kergommeaux, E. Maillet and J-M. Vincent: "Monitoring Parallel Programs for
Performance Tuning in Cluster Environments", In "Parallel Program Development for Cluster
Computing: Methodology, Tools and Integrated Environments" book, P.Kacsuk and J.C.Cunha
eds, Chapter 6., will be published by Nova Science in 2000.

[4] P. Kacsuk: "Performance Visualization in the GRADE Parallel Programming Environment",
accepted for HPCN Asia, Beijing, China, 2000.

84


