Time Independent Invocation in Java CMS*3

Attila Ulbert and Markus Hof

Distributed object middleware, e.g. CORBA and Java RMI, hides the network details required
in order to access remote objects and to invoke their methods. It offers an easy to use framework
to develop distributed object oriented applications. However, many applications require - to some
extent - access to some of these details. Many of these requirements can be satisfied with the help
of appropriate invocation semantics. Therefore, many middleware platforms extend their definitions
to include additional semantics, e.g. interceptors in COOL or filters in Orbix. This lead also to
modifications to standards as, e.g. CORBA with its messaging service, Enterprise Java Beans with
transactional semantics.

stub
code skeleton
.] F|Ien'[StI.de s_erverstl_de U receiver
caller-invocation —= invocation invocation (real object)
semantic semantic

Figure 10: Client and server-side semantics

In our project we added a semantic for time independent invocations (TII) to the composable
message semantics (CMS) framework. The CMS framework offers an alternative to Java RMI as a
platform for remote method invocation. It allows the creation and composition of arbitrary new invo-
cation semantics, e.g. replication, synchronization, asynchronous as well as arbitrary compositions
of them. An invocation semantic consists of a server and a client part (see Figure 10). Both of these
again are composed of smaller building blocks that are combined with the Decorator pattern. Every
object can have its individual set of semantics. It is even possible to define more than one set of
semantics for one and the same object. This allows the definition of multiple views on an object.

Other systems already define time independent invocations, e.g. the CORBA messaging service.
A time independent invocation can be viewed as a fault-tolerant asynchronous invocation that is able
to receive the results of the execution of the remote method at an arbitrary later point in time. This
technique can help to the design and may simplify the implementation.

We have specified the implemented invocation semantics formally, as the informal specifications
are often ambiguous. Our formal TII description makes the specification unambiguous and eases the
design of the implementation. The complete implementation can be achieved by extending a simpli-
fied TII called oneway-TII (a fault-tolerant asynchronous invocation with parameters specifying the
level of fault-tolerance).

With our CMS framework it is quite simple to use new invocation semantics. After the server in-
stantiates and exports the object with the assigned server-side semantics, the client imports the object
and assigns the desired client-side semantics. Afterwards, the methods of the imported object can
be invoked as if they were methods of a local object. The following example depicts the assignment
of a TIl semantic to the method "set” and an invocation of that method that uses the newly assigned
semantics.

Whenever the method "set" is called, the system transparently applies the assigned semantics and
guarantees a fault-tolerant behaviour on the level specified by the two parameters of the TlInvocation
constructor. In order to use the complete T1I, we have to either supply a call-back method or a polling
object. With the help of one of these two techniques we can access the results of the remote method
invocation and can verify whether the remote invocation was successful or not.

Test testObj = new Test();

ClassInfo ci = new ClassInfo(testObj); // get Metainformation of class Test

13This research work was supported by Grant Nr. FKFP 0206/97

99

MethodInfo mi = ci.getMethod("set") ;

CallerInvocation inv = new TIInvocation (23, 100); // semantic with 23 retries
// every 100 milliseconds

mi.setCallerInvocation(inv); // assign semantic to method "set"

testObj = (Test)Remote.get (adr, ci, "testObj");

testObj.set(....); // call methods as usual

100

