The Jodie programming language
Tibor Csdki and Krisztidn Veréb

One of the main policies of the Artificial Intelligence (Al) research is the creation of different
paradigmatical languages supporting the solutions of Al problems. These developments have
resulted the functional LISP and the declarative Prolog programming languages, among others.
In spite of its many advantages, the declarative paradigm has the disadvantage of lacking the
procedural programming equipment. This programming equipment is essential for large and
complex developments. One possible solution to this problem is the creation and use of hybrid
languages.

The usual method of creating a multiparadigmatical language is to extend a declarative one.
The results of this method are declarative languages with a mixed structure, but they are not
as universal as needed. The other possibility is to create an absolutely new language which is
expressive enough. However, such a language could be difficult to learn.

To avoid these difficulties, we have decided to have well-known and easy-to-learn lan-
guages as the basis of our newly created language, Jodie. The concept of Jodie is to establish
a link between a declarative (Prolog) and an imperative (C) programming language. For this
establishment it is necessary to introduce new grammatical elements and make compromises.
The main goal of Jodie is to separate the elements of different paradigms. We have solved this
requirement with the help of new types which work like functions and we can operate on these
special functions using ‘conventional” C function calls. There are pure Prolog codes in the bod-
ies of these Al functions. The communication has been realised with the help of parameters
between the C and the Prolog functions. The parameters transferring information between the
called Prolog routine and the calling C syntactical unit have a special type, namely the query
type. This type appears only by its literals. Variables with this type are not allowed.

As a result of these steps, it was obvious to integrate programming objects of Automata
Theory (e.g., Turing machine, Lindenmayer System, Finite State Automata) like we did it with
Prolog before. There are also possibilities of integrating other programming objects, as well. To
establish the usage of automata we introduced new Al constant and Al function types to make
their description possible.

Since Jodie is easy to learn, contains a whole real Prolog and automata codes can be im-
plemented with its help as well, this language is practical to use in the education of Al and
Automata Theory.

Keywords: Artificial Intelligence, Automata Theory, Multi Paradigmatical Languages, Prolog, C

23



