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One of the principal targets of nonlinear system identification is determining the complexity of
an unknown system. If the system is dynamic we have to choose the class of the model and
determine the order of the model. The order of the model means how many past inputs and
outputs are used in the calculation of the current output. There are several information criteria
to qualify a model but they need the setting of the model’s parameters what is the most time
consuming step in the identification. We will use the Lipschitz method which estimates the
order of the model directly form input-output data [1]. The main idea of the method is that a
continuous function’s gradient has a definite maximum and this is a characteristic feature of
the function. We calculate the following quotient:
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Where L™ (k) is the k-th largest gradient of the function calculated from the known points of
the function. This quotient has the property that, if n is the optimal order than L("0~1) is much
larger than L(m0) and L(no+1) jg very close to L) so we have to find the sharpest breakpoint
in the graph of L™ vs. n. The problem with Lipschitz method is that if noise appears on the
inputs and outputs the estimation of the order will be improper or the graph has no sharp
breakpoint. To avoid this we use the Errors-in-Variables (EIV) cost function what modifies the
input data to eliminate or reduce the noise [2]. The main idea of EIV is that we weight the
error of the input and the output according to the reciprocal of the noise variance. For each
measurement k the sample variances of the inputs 62,  and outputs 65’ .. the sample covariance
matrix &Zy, i and the mean values 4y and g, can be calculated or can be estimated [2].
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The greater noise causes that the error counts with smaller weight and the training points
with less noise cost more. It can be proved that with noisy data it converges to the true model’s
parameters. Because of the modification of the input data, the number of free parameters is
increased, therefore the EIV training is very prone to overfitting. To avoid overfitting we first
train the network with Backpropagation (BP) and Least Squares (LS) cost function. Our main
idea is to combine Lipschitz method and EIV cost function to get more characteristic estima-
tions of the model order. First we estimate the order of the unknown model from its input-
output data. The Lipschitz method uses the input-output data as a NARX [3] model. Because
of the noise this estimation is probably not characteristic enough. Second we create the model
with the estimated order and train it with BP and LS. At a defined error level we stop the train-
ing and start using the EIV. The training is controlled with early-stopping to avoid overfitting.
If training is finished we get the model and we also get a new input sequence modified by the
EIV. On the modified input sequence we use the Lipschitz method again and we compare the
results. If the curve sharpened at the estimated order than the order could be correct. We test
the method on artificial and real-life industrial problems (LD converter in steel production) [4].
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