Testing aspect in Model Driven Software Development
Gabor Béatori and Domonkos Asztalos

Big changes are occurring in the field of software development. New technologies appear
whilst others vanish. The most important motivations of the new technologies are to make
the software development lifecycle shorter and to create reusable components. Model-Driven
Architecture (MDA [1]) is one approach to this challenge, where the problem domain is mod-
eled at a high level of abstraction, so-called Platform Independent Models (PIMs), and the
implementation is derived from these models. The core technology of the MDA is the Unified
Modeling Language (UML), which is the standardized modeling language for object-oriented
software development. By supporting the MDA with an executable form of the UML, called
xUML [2], we can generate 100% of the source code from the high level model with minimal
manual intervention. The XUML process is a rigorous and precise development technique.
A key part of this process is the ability of simulating and testing the PIMs without any spe-
cific platform. This new technology allows to begin the testing process at the early phase of
the development lifecycle, but UML technology focuses primarily on the definition of system
structure and behaviour and provides only limited means for the testing aspect of the mod-
eled problem. However, testing of the high level models is crucial, because the majority of the
software defects (appr. 60-70 per cent) can be eliminated at this level of abstraction.

Aspect-Oriented Programing (AOP [4]) has been proposed as a technique for improving sep-
aration of concerns, such as security, logging, error handling etc., in software. Aspect Oriented
Software Development techniques allow one to modularize crosscutting concerns into separate
"aspects"” of a system and integrate those aspects with other kinds of modules throughout the
software development lifecycle. Testing is one of these aspects, it is independent of the high
level model itself, only depends on the requirements of the software, thus we can define it
separately from the application model.

Our main goal is to create a compiler (weaver) which is capable for weaving special code
blocks into the platform independent model so that the derived new model can communicate
with a tester (e.g. TTCN-3 [3]). These alterations preserve the functionality of the original
model, but provide interfaces in order that a tester acquires information about the state of the
model. We use "tags" in the UML model to indicate the points where the weaver can insert the
special codes. TTCN-3 is used as a test description language in order to reuse these early phase
tests at the implementation level, because these functional tests can provide the basis of other
types of tests (e.g. performance tests).

References
[1] R. Soley: Model Driven Architecture: An Introduction. http://www.omg.org.
[2] Supporting Model Driven Architecture with eXecutable UML Kennedy Carter 2002

[3] ETSI ES 201 873-1: The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language. V2.1.0 (2001-10), 2001; also an ITU-T standard Z.140.

[4] Gregor Kiczales et al.: Aspect oriented programming ECOOP’97 LNCS 1241, pp 220-242.
Springer-Verlag, June 1997.

28



