
Innovative Uses of Programming Constructs Supporting
Aspect-Oriented Programming

Miklós Espák

Separation of concerns is one of the most important objectives during software develop-
ment. Unfortunately, the boundaries of the individual concerns of a software do not overlap
with the boundaries of the corresponding program modules in most cases. When a concern
cannot be mapped unambiguously to a single program module, it is said to crosscut these
modules. Aspect-oriented programming (AOP) provides a technique for separating crosscut-
ting concerns into distinct program modules. AOP is a substantially new approach in software
development. Due to its novelty, the most appropriate language constructs to support it are yet
to be found.

By this time several AOP systems have been developed. Naturally, the implementation of
these systems cannot break away from current (non- AO) languages. Instead, the impact of cur-
rent mainstream languages is very strong on AOP system implementations. These languages -
being the base of an AO extension of framework - crab the creation and implementation of the
most appropriate AO language constructs.

In the paper I will show how typical object-oriented (OO) languages hinder introducing
more innovative AO language constructs, and I will provide solutions for these restrictions.

The paper focuses mainly on the following issues:

� designating execution points

� context exposure

� argument passing modes

I will show that by "rehabilitating" some constructs well-known in declarative languages and
introducing them in the OO environment, a more expressive AO environment can be gained.

I will present a sample implementation of the new concepts mentioned. The implementa-
tion has been worked out in the Common Lisp Object System (CLOS), and makes a part of a
universal low level framework, which serves as a new foundation for current and future AOP
systems.

39


