Model Checking of Visual Modeling Languages

Akos Schmidt

In the past few years the Model Driven Architecture (MDA) has become a leading direc-
tive in the field of software engineering. According to the main concept of MDA, at the first
phase during the design of the software system, a platform independent abstract model (PIM)
is produced in a visual modeling language (mostly UML). The concrete platform specific mod-
els (defined by different visual modeling languages of UML dialects, for example for .NET,
CORBA, or J2EE) can be derived from this abstract platform independent model by automatic
model transformations. Finally, automatic code generators produce the majority of the final
source code of the implementation.

Nowadays the wide use of visual modeling languages (such as UML) in software engineer-
ing has caused the quick spread of metamodeling and graph transformation techniques, as
being an expressive and visual, but mathematically precise specification technique. Despite
the mathematical accuracy it cannot guarantee that the components of the system model (the
concrete model instances of the modeling languages) are free of design or modeling faults,
which (without detection and correction) might deteriorate the safety or reliability of the sys-
tem. The later a fault is detected during the design period, the more and more its correction
will cost.

Typically, a wide range of model checkers (like, for instance, SMV, SAL, Murphi, or SPIN)
are used in software engineering applications to detect such faults in the modeling phase au-
tomatically (where system properties are checked without human interaction). As their input
specification language is a low-level and textual description instead of visual modeling lan-
guages widely used by engineers, several transformation has been developed to derive model
checker input specifications from behavioral UML models automatically.

I present a method (with tool support of CheckVML [1]) for model checking arbitrary vi-
sual models defined by metamodeling and graph transformation techniques. First, a model
checker independent mathematical representation (a transition system) is derived from our ini-
tial model, which is a common mathematical formalism that serves as the input specification
of various model checker tools. For the second step of the transformation the tool generates a
Promela description (into a file) from the transition system which can serves as the input for
the SPIN model checker.

The model checking process for models of visual modeling languages consists of two steps:
first, the model checker (SPIN in our case) input specification is generated by our tool (Check-
VML). Finally, SPIN can verify different system properties (like safety, liveness, or deadlock
freeedom), which can be expressed as LTL (Linear Temporal Logic) formulas.

I demonstrate the feasibility of the approach and transformation tool CheckVVML on a well-
known verification benchmark; namely transforming the model of dining philosophers into a
SPIN specification, and verifying safety properties on the generated Promela code. The result
of the runtime assessments [2] shows that the verification of a simple property by SPIN takes
much longer than the transformation of the model from the visual description using Check-
VML.

References

[1] A. Schmidt and D. Varrd. CheckVML: A tool for model checking visual modeling lan-
guages. In P. Stevens, J. Whittle, and G. Booch, editors, Proc. UML 2003: 6th International
Conference on the Unified Modeling Languages, volume 2863 of LNCS, pages 92-95, San
Francisco, CA, USA, October 20-24 2003. Springer

[2] Sz. Gyapay, A. Schmidt, and D. Varré. Joint Optimization and Reachability Analysis in
Graph Transformation Systems with Time. In Proc. GT-VMT 2004 International Workshop
on Graph Transformation and Visual Modeling Techniques. In press. Barcelona, Spain,
March 27-28 2004.

102



