
Dynamic Slicing of Programs Compiled for the Java Virtual Machine

Attila Szegedi and Tibor Gyimóthy

In this paper, we present a technique for obtaining dynamic slices of programs compiled for
the Java virtual machine. The presented technique is independent of source language, therefore
works for programs written in any language that can be compiled to Java virtual machine
bytecode. In contrast with existing published techniques [1] that require a customized Java
compiler (which also implies access to the source code and being limited to the Java language)
our approach works with programs compiled with arbitrary third party compilers designed
for arbitrary source level language. As a consequence, our method does not require access to
the source code during any point of the slicing process. However, we still retain the ability to
express the slicing criterion and the resulting slice in terms of source code locations using the
line number information present in compiled code.

We do not instrument the source nor the compiled bytecode, but instead use a special in-
strumented virtual machine. An advantage of the approach is that we can successfully track
dependencies generated through execution of third-party library code, standard Java library
code, and even code that was dynamically generated during program execution (dynamically
generated code is an ever more frequently used Java technique), as well as operations per-
formed in virtual machine’s native code (i.e. object cloning). Since our ultimate goal is covering
all of the internal dependencies that can possibly occur during the execution of a program in a
Java virtual machine, we cover specific aspects like reverse interprocedural flow dependencies
(from callees to callers) introduced by catching exceptions in caller methods thrown by their
callees, inter-thread notifications, and even limited ability for tracking dependencies in external
native code called through the JNI interface. The presented execution history format provides
full-fidelity representation for multithreaded execution, which is also a natural feature of the
Java virtual machine that must be fully supported. We also present the static preprocessing
steps for slicing that are specific to the method: constructing the left-hand-side expressions in
assignment instructions without relying on source code, as well as the control flow calculations
that take into account exception handlers. The slicing algorithm used is a variant of the forward
global method for computing backward dynamic slices based on work presented in [2].

References

[1] F. Umemori, K. Konda, R. Yokomori, K. Inoue: Design and Implementation of Bytecode-
based Java Slicing System, Proceedings of the Third IEEE International Workshop on Source
Code Analysis and Manipulation, pages 108- 117. Amsterdam, The Netherlands, September
26-27, 2003.

[2] Beszédes, Á., Gergely, T., Szabó, Zs. M., Csirik, J., and Gyimóthy T.: Dynamic Slicing
Method for Maintenance of Large C Programs, Proceedings of the 5th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2001), pages 105-113. Lisbon,
Portugal, March 14-16, 2001.

115


