Schedule on parallel machines in the case of individual machine-set
Zsuzsanna Vaik

There is a less researched area of the parallel machines scheduling, when there is an M
machine-set for each job j, where it can be scheduled. We would like to minimize the latest
job’s finishing time, that is the makespan, C,,,, SO, that each job can be processed only by one
machine at a time and one machine can process at most one job at a time. This problem is
NP-complete, since its special case, the P||C,,., problem, (when each job can be processed by
each machine), is known to be NP-complete [1]. If we have restrictions for the M; machine-sets,
the well-known list-schedule gives a nearly optimal solution. We give a better approximation
algorithm for the optional problem.

M. Pinedo [2] has studied that special case of the problem, when the job’s processing times are 1,
and he has showed that,if the M; sets are laminals, then an easy list-schedule gives an optimal
solution. We show for the general case, when the M ; sets are optional (P|M;, p; = 1|Cy,qz), that
it is a network-flow-problem. Moreover, from this, we have an algorythm for that special case,
when we allow the preemtion for the jobs (P|M;, pmtn|Cpe,). From this algorithm we have
received a minimax formula for the optimal makespan too.

We study the problem when we allow a special preemption, called pmitn*, when a job can be
split, but it should be processed immediately by another machine. This special preemption
gives a better solution, that we show in an example, that the optimal value of the problem
P|Mj, pmtn*|Cpq. is less than the equivalent P|M;|C,,.. problems optimal value. But we can
observe, that if M; = M for each job, than the special preemption gives no better optimal value,
so in this case the problem is equivalent with the P||C,4, problem, which is NP-complete. We
have a 2-approximate algorythm for this problem too.

References

[1] M.R.Garey, D.S. Johnson [1978]: Strong NP- completeness results: motivaton, examples
and implications, Journal of the Association for Computing Machinery 25, 499-508

[2] M.Pinedo [2002]: Scheduling Theory, Algorithms, and Systems, Second Edition, Prentice
Hall

123

