
Incremental Graph Transformation in Relational Databases
Gergely Varró

The theory of graph transformation [2] was originally developed as a generalization of
Chomsky grammars from strings to graphs. Methods, techniques, and tools from the area
of graph transformations have already been studied and applied in many fields of computer
science such as formal language theory, pattern recognition and generation, compiler construc-
tion, software engineering, etc.

Despite the large variety of existing graph transformation tools, the implementation of their
graph transformation engine typically follows the same principle. In this respect, first a match-
ing occurrence of the left-hand side (LHS) of the graph transformation rule is being found by
some sophisticated graph pattern matching algorithm. Then the engine performs some local
modifications to add or remove graph elements to the matching pattern, and the entire process
starts all over again.

Since graph pattern matching leads to the subgraph isomorphism problem that is known
to be NP complete in general, this step is considered to be the most crucial in the overall per-
formance of a graph transformation engine. Current tools (e.g., PROGRES [4]) use different
efficient strategies for the graph pattern matching phase.

However, I argue that the overall complexity of a graph transformation engine is not neces-
sarily equal to the complexity of the graph pattern matching phase, especially for long trans-
formation sequences. During the execution of a transformation step, instance models are only
modified locally in the context of the matching occurrence of the LHS and the rest of the in-
stance model left unchanged. Thus any implementation that does not reuse the information
collected for the previous matching and that restarts the complex and expensive pattern match-
ing phase from scratch is not optimal.

I propose a technique based on incremental updates [3] which, in itself, is not a new idea,
since it has been widely accepted and successfully used in relational databases, but it provides
a new philosophy for implementing efficient graph transformation engines.

The main idea of incremental updates in graph transformation systems is to keep track of all
possible matchings of graph transformation rules (e.g., in database tables) to make the graph
pattern matching step very fast. Afterwards when a rule is applied we update data in all lo-
cations it is required. Since graph transformation typically manipulates only a small fragment
of the instance model, incremental updates require minor changes to the stored data. Natu-
rally, the initialization phase needs some considerable amount of pre-processing prior to the
transformation, but the subsequent transformation process itself becomes much faster.

Relational databases give several supporting features (e.g., foreign key constraints, database
views) for preserving data consistency. A view is a query that defines a computed relation in
the database (see [1] for details). It is updated incrementally in most off-the-shelf relational
databases. Our idea is to build a graph transformation engine on the top of a relational database
to exploit various results of database theory.

References

[1] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, techniques and
applications. IEEE Quarterly Bulletin on Data Engineering; Special Issue on Materialized
Views and Data Warehousing, 1995.

[2] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transfor-
mation. Vol. 1: Foundations. World Scientific, 1997.

[3] G. Varró and D. Varró. Graph transformation with incremental updates. In Proc. 4th Int.
Workshop on Graph Transformation and Visual Modeling Techniques, 2004.

[4] A. Zündorf. Graph pattern-matching in PROGRES. In Proc. 5th Int. Workshop on Graph
Grammars and their Application to Computer Science, volume 1073 of LNCS, pages 454-
468. Springer-Verlag, 1996.

124


