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Consider the following delayed differential equation:

y′ = −α
(

ey(t−1) − 1
)

,

where α ∈ R
+ is a parameter.

When α ≤ 1.5, it is known, that the trajectory converges to zero, and when α ≥ π/2, the
trajectory converges to different periodic solutions. Thus, the question is the [1.5, π/2] interval.
We want to prove that there do not exist periodic solutions of this delayed differential equation
with any α ∈ [1.5, π/2] parameter as conjectured in [6].

The analysis of this problem is very hard with numerical methods, hence in the first part
we consider an easier problem. We are interested in checking whether for all α ∈

[

3
2 , π

2

]

, there
exists a unit length time segment where the absolute value of the solution is less than 0.075. Let
the initial function be

φ(s) ≡ −11,

where s ∈ [−1, 0].
Most verified techniques for solving ordinary differential equations apply a Taylor series.

Our technique is based on the same idea too. The general form of the Taylor-series is:

y(x) =
n−1
∑

k=0

(x − x0)
ky(k)(x0)

k!
+ rn. (1)

Using the mean-value theorem, rn can be bounded by

rn =
(x − x0)

n

n!
y(n)(x∗), (2)

for some x∗ ∈ [x0, x] (x0 ≤ x).
If we want a better approximation of the solution, we have to use higher derivatives. We

can characterize the higher derivatives with this formula:

y(k)(t) = −αy(k−1)(t − 1) +

k−1
∑

i=1

(

k − 2
i − 1

)

y(i)(t − 1)y(k−i)(t).

In this case the verification means verification in the mathematical sense, hence rounding
and other errors were considered and bounded. Instead of real numbers, we can also calculate
with intervals. In case the bounds of the result interval are not representable, then they are
rounded outward. In this problem we used the multiple precision interval arithmetic libraries
(C-XSC, PROFIL/BIAS) [5, 3].

To provide a mathematical proof, it is not enough to use interval arithmetic, we have to use
the formula in a correct, suitable form. We can use the Taylor-series to bound the results:

Y (t1) =
n−1
∑

i=0

Y i(t0)
(t1 − t0)

i

i!
+ Y ([t0, t1])

n (t1 − t0)
n

n!
,

y([t0, t1]) =
n−1
∑

i=0

Y i(t0)
([0, t1 − t0])

i

i!
+ Y ([t0, t1])

n ([0, t1 − t0])
n

n!
.
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We use two fix length lists to store the solution bounds. The first list contains the solution
and the derivatives on time intervals, which cover the unit length time segment. The other list
stores the solution and the derivatives in concrete time points. We calculate the new elements of
the lists with the earlier discussed formula. The oldest elements are deleted from the lists, and
the new ones are inserted. This technique has three parameters: step length, maximum derivate
rank, and a precision of the interval arithmetic. We combine our method and an optimization
technique to determine the optimal values for these parameters.

We proved the above original statement with this technique for some tiny intervals around
certain computer representable numbers. But we were not able to prove it for all points of the α
parameter interval, due to the large amount of necessary CPU time. We show the details of the
newest program which is based on the earlier technique and the idea some theoretical results.
This compound method is able to prove the original conjecture for α ∈ [1.50, 1.568].
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