
Concept-based C++ template overload compilation with XML
transformations

Szabolcs Payrits and István Zólyomi

Parametric polymorphism provides a high level of abstraction by enabling type arguments
in function and type definitions. This programming paradigm is implemented by templates
in C++. Type safety of parametric polymorphism is greatly improved by concept checking
which allows formal specification of type parameter requirements. On one hand, concepts
help application developers to implement correct parameter types conforming to static type-
safety. On the other hand, concepts also make it possible to overload polymorphic functions
based on selected characteristics of the parameter types.

Currently there is no established C++ standard for defining concepts, although several pro-
posals compete to be adopted into the standard. The common approach in these proposals is
to define concepts similarly to interfaces in other languages, e.g. Java. In this paper we suggest
another possible alternative, similar to current type traits definitions. We assume a set of ele-
mentary predicates about C++ types and we define concepts as a composite logical expression
of these elementary predicates.

Advanced C++ metaprogramming techniques also require a template overloading mech-
anism based on template type arguments. However, currently C++ template overloading is
fundamentally based on the Substitution-Failure-Is-Not-An-Error (SFINAE) rule. This rule
makes template overloading dependent on tracing of internal compiler behaviour, what makes
template metaprogramming extremely vulnerable to compiler bugs and compiler-dependent
relaxations of the standard.

In this paper we show that in selected cases it is possible to replace the current template
overloading approach based on SFINAE with template overloads based on explicitly defined
concepts. By eliminating SFINAE, we can separate the compilation of template-containing
C++ programs into two phases. During the first compilation phase, resolution of template
overloads based on our concept predicates and template instantiation is done. Second phase is
the compilation of a c++ program containing no templates into binary code.

With this separation of phases, it is possible to use an independent meta-compiler tool for
the execution of the first phase of the compilation. The second compilation phase can be done
with any standard C++ compiler.

As a proof of concept, we have started to implement the-phase compilation mechanism.
Currently, our C++ concepts are defined as C++ comments for template parameters. Compi-
lation consists of three steps: in first step, we use the Columbus C++ parser to transform our
concept-containing C++ program into an XML-based representation called CPPML. Template
instantiation with concept-based template overloading is implemented as an XSLT transforma-
tion on the CPPML language, resulting in another CPPML document with all templates instan-
tiated. In the third step we convert the transformed document back into standard (template-
less) C++ code.

References

[1] B. Stroustrup. The C++ Programming Language (3rd Edition), Addison-Wesley Professional,
June 1997.

[2] J. Siek, D. Gregor, R. Garcia, J. Willcock, J. Järvi, and A. Lumsdaine. Concept for C++0x,
Technical Report N1758=05-0018, ISO/IEC SC22/JTC1/WG21, January 2005.

[3] G.D. Reis and B. Stroustrup. Specifying C++ concepts, N1886, JTC1/SC22/WG21 C++ Stan-
dard Comittee, October, 2005.

86



[4] F. Rudolf and Á. Beszédes. Data Exchange with the Columbus Schema for C++, In Proceed-
ings of the 6th European Conference on Software Maintenance and Reengineering (CSMR 2002),
pages 59-66, IEEE Computer Society, March 2002.

87


