The Chooser-Picker 7-in-a-row-game

András Csernenszky

Our main objective is to show how the Beck's conjecture intertwines the Chooser-Picker games with the k -in-a-row games. The k-in-a-row game deserves consideration by itself, because the last result of this topic was the famous theorem about the 8 -in-a-row game (it is a blocking draw on the infinite chess-board) is more than 27 years old, see [3, 4]. Since then a lot people tried to prove similar theorem for the 7 -, or 6 -in-a-row-game, but up to now without success. We sketch a possible way to show that (assuming perfect play) the 7-in-a-row is also a blocking draw.

Given a hypergraph (V, \mathcal{F}) there are a number of games that can be played on it. In the Maker-Maker version, the first player and the second player take the elements of V, and the winner is who gets all elements of an $A \in \mathcal{F}$ first. In the Maker-Breaker version Maker wins by occupying all elements of an $A \in \mathcal{F}$, while Breaker wins by preventing Maker in doing so. Finally in the Picker-Chooser version Picker selects two vertices of V, Chooser takes one of those, and then the other of course goes back to Picker. Chooser wins if he occupies a whole winning set, while Picker wins if he can prevent this. When V is odd, the last element goes to Chooser.

While the Chooser-Picker games are interesting on their own, these are also useful tools to understand positional games better, see details in [2, 1]. Namely, from the result of a ChooserPicker game we have an insight to the result of the Maker-Breaker version: these coincide several times, and it seems that Picker is always better off than Breaker.

In this work we prove that Picker wins the Chooser-Picker version of the 7-in-a-row game. To prove the theorem, we exhibit an appropriate tiling of the board. The tiling is constructed in such a way that if Picker wins an auxiliary game on each tiles then Picker wins the original 7-in-a-row game. The proof of this case is a medium size case study.

References

[1] A. Csernenszky, C. I. Mándity and A. Pluhár, On Chooser-Picker Positional Games, submitted.
[2] J. Beck, Positional games and the second moment method, Combinatorica 22 (2) (2002) 169216.
[3] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for your mathematical plays, Volume 2, Academic Press, New York 1982.
[4] R. K. Guy and J. L. Selfridge, Problem S.10, Amer. Math. Monthly 86 (1979); solution T.G.L. Zetters 87 (1980) 575-576.

