
Metaprogramming on the Proof Level

Gergely Dévai

This research is about the usability of metaprogramming techniques for construction of pro-
gram correctness proofs.

In metaprogramming one uses two languages: a base language and a meta language. The
compilation is done in two phase: first a precompiler processes the meta language constructs
and generates a result written purely in the base language. Examples vary from macro assem-
blers to template metaprogramming in C++. In these classical applications metaprogramming
is used to generate programs.

The goal of formal programming methods is to produce verified programs. These methods
try to increase reliability of software by formally proving its properties. In order to achieve
this goal, one has to construct correctness proofs of programs. There are two main approaches:
writing the program first and proving its properties afterwards (verification), or deriving the
program from its specification using rules that guarantee soundness (correctness by construc-
tion).

We use the second approach. In our system the programmer writes specification first, then
refines it by more detailed specification statements. This process is called stepwise behavioral
refinement and it results in a correctness proof of the algorithm. Our system checks this proof
and generates the program automatically, which is then correct by construction.

We investigate how to support proof construction using metaprogramming techniques.
That is, the base language is the proof language and metaprogramming elements are used
to generate proof fragments. Let us summarize the advantages of this approach.

• Decreased proof-length. If we identify often used proof fragments and generalize them to
proof templates we can decrease the length of the proof by calling the templates instead
of repeating the proof fragment several times.

• Templates make the system extensible. In our system we specify only a small subset of in-
structions. The proof for programming constructs like conditional statements, loops, pro-
cedure calls are generated by templates. This means that the verification conditions for
these constructs are not built into our system. If one needs a new kind of loop that is
not supported yet, can develop a template for the new construct. This is not possible in
systems where the supported language elements are hard-wired in the system core.

• Meta programming is safe at the proof level. Primitive metaprogramming constructs, like
macros sometimes generate inefficient or erroneous program fragments. This can also
happen when metaprogramming is used to generate proof. Fortunately the generated
proof is checked afterwards and all the errors are reported to the programmer already in
compile time.

• The trusted base can be minimal. In every verification framework we have to trust the sys-
tem: its proof engine, the rules about different language constructs etc. In our system this
trusted base is minimal: it consists of the module that checks the validity of proofs and
the specification of primitive instructions. All other features are provided by templates,
and, according to the previous point, erroneous templates can not corrupt the soundness
of the system.

In this paper we present a set of metaprogramming constructs that we have found useful in
proof generation. These include different types of proof-templates, conditions, passing proof
fragments as parameters and generation of template definitions by templates. We also present
how to use these features to implement proofs for different programming language constructs.

18


