
Verification of UML 2 State Machines by Automated Model
Transformation to the SAL Model Checker

Áron Sisak

Nowadays, Model Driven Software Development aims at offering a framework to automate
the synthesis and verification of software. This paper aims at presenting the transformation of
UML 2.0 state machine diagrams to a model checking language (i.e., a mathematical model),
which is suitable for formal verification. The approach allows to perform early investigation of
software models defined in a very widespread modeling language with rich capabilities.

UML 2.0 State Machines provides the de facto standard for modeling reactive, state-based
system behavior. It offers both a graphical representation for intuitive, visual systemmodeling
and a semantics that aims to serve as a base for both code generation and verification and
validation activities. However, besides the powerful concepts included in the State Machine
language, the semantics contained by the standard contains several ambiguities as well. The
Precise Statechart Semantics introduced in [1] offers remedy for these problems. The semantics
is defined in a declarative manner, which suits the declarative model checking paradigm very
well. The transformation is based upon Precise Statecharts (PSC) .

Formal verification aims to prove that a system model satisfies certain properties. Model
checking is a widespread formal verification approach. It performs the exhaustive exploration
of the model to verify the desired properties. The SALmodel checking framework [2] is widely
used to perform model checking, mostly because its capability of coping with large model
state spaces. The PSC semantics is based on the Kripke Transition System formalism, which is
semantically very close to the foundations of the SAL module language, which makes possible
to find a well-established mapping to transform PSC constructs into the SAL language.

My prototype transformation tool is implemented on the top of the Java API provided for
the Precise Statechart Semantics, which makes possible to process UML2 statechart models
produced by EMF-based UML modeling tools, with access to the special constructs defined
by the PSC semantics (sets and relations). The tool implements a template-based solution, us-
ing the Velocity template engine. Metamodel-level constructs are transformed directly without
any knowledge about the actual model being processed; e.g., initializing a statechart or firing a
transition are mapped into a generic SAL module. States, regions, triggers and other elements
are mapped to enumerations based on the actual model being transformed. Guards and ef-
fects are implemented as parameterized generic SAL code. Arbitrary SAL code can be used in
guard and effect implementations. The actual run-time data consist of a set of boolean arrays
representing the active states in the statechart structure, and a set of SAL variables used in the
guards and effects. One of the most difficult aspect of implementing the transformation engine
is to decide on proper SAL constructs that both capture the semantics properly and avoid state
space explosion as much as possible, e.g., using simple boolean arrays instead of records can
reduce the state space with multiple orders of magnitude.

Besides support for basic state machine constructions discussed above, verification of inter-
acting state machines is also possible, as event queue models are supported. Basic support to
map standard UML variable types to SAL types is also present in the current implementation.
After implementing the full semantics, various abstraction possibilities are to be investigated
in order to cope with even bigger state spaces.

References

[1] G. Pintér. Model Based Program Synthesis and Runtime Error Detection for Dependable
Embedded Systems, PhD Thesis, BMEMIT, 2007

[2] L. de Moura et al. SAL 2, in R. Alur and D. Peled, editors, CAV 2004, LNCS 3114, pp. 496–500

55


