Distributing Agent-Based Simulation

Richárd O. Legéndi and Attila Szabó

The exponential growth of computational capacity of personal computers played an important role in the spread of computational modeling. Simulation techniques such as Agent-Based Modeling (ABM) are becoming a common practice, where enormous runs claim vast computational resources because of the need of precise and robust large scale experimental results. Multi-core systems (like clusters, grids, clouds, or even desktop PCs) offer multiplied resources at a relatively low cost, but effective utilization of these systems is still a challenge for software technology.

In the context of ABM distribution, the dynamics of the communication network between agents play an important role. When the parts of a distributed model are highly interconnected, the overhead of network communication can easily reduce the performance of the multi-core system. Gulyás et al. defined a classification of six types (based on common communication schemes), and introduced a solution to distribute models having static communication networks [1]. Scheutz and Schermerhorn defined adaptive algorithms for parallel execution of "spatial AMBs", where agents move in a spatial environment [2]. Gilbert et al. used a peer-to-peer infrastructure to simulate the emergence of artificial societies [3]. Yamamoto et al. created a simulation environment that enables to host millions of agents on a system of workstations connected with a high performance network [4].

In this paper we study the performance of some existing tools of distributed software execution by running agent-based simulations on a cluster of computers. We measure the effectiveness and practical scalability of these frameworks by implementing selected models available at the the OpenABM Consortium's on-line model repository [5] using ProActive [6], JavaSpaces [7], and other Java RMI-based tools [8]. We also seek for effective implementation techniques and practices to support large-scale simulations, those exceeds the limitations of a single computer (e.g. by using several gigabytes of memory). Our goal is to reach a competitive simulation speed compared to sequential execution by keeping the cluster's communication overhead at a relatively low level.

Acknowledgements

This work was supported by a grant from the Hungarian Government (TÁMOP-4.2.1/B-09/1/KMR-2010-0003).

References

- [1] Gulyás, L. et. al.: Templates for Distributed Agent-Based Simulations on a Quasi-Opportunistic Grid, *EMSS* (2008).
- [2] Scheutz, M., and Schermerhorn, P.: Adaptive Algorithms for the Dynamic Distribution and Parallel Execution of Agent-Based Models, *Journal of Parallel and Distributed Computing*, 66, 1037-1051., (2005).
- [3] Gilbert, N. et al.: Emerging Artificial Societies Through Learning, *Journal of Artificial Societies and Social Simulation 9* (2006).
- [4] Yamamoto, G., Tai, H., and Mizuta, H.: A platform for massive agent-based simulation and its evaluation, In Proceedings of the 6th international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS '07) (2007).

- [5] Model Archive, OpenABM Consortium's site. Web (7. May, 2010.)
- [6] Baude, F. et al.: GRID COMPUTING: Software Environments and Tools, *Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag* (2006).
- [7] Freeman, E., Arnold, K., and Hupfer, S.: Javaspaces Principles, Patterns, and Practice, 1st. edition Addison-Wesley Longman Ltd. (1999).
- [8] Wollrath, A., Riggs, R., and Waldo, J.: A Distributed Object Model for the Java System (2010).