
x86 instruction reordering for code compression

Zsombor Paróczi

Runtime executable code compression is a special method, which uses standard data com-
pression methods and binary machine code transformations to achieve smaller file size, yet
maintaining the ability to execute the compressed file as a regular executable. In a typical case
the source code gets compiled with a compiler and linker, the output is a binary executable,
which contains the machine code and the data needed by the application. This work focuses
only on executable machine code for the Intel x86 instruction set.

Many compression methods for x86 machine code have been developed, most of them
use model based compression techniques (such as huffmann coding, arithmetical coding,
dictionary-based methods, predication by partial match and context tree weighting), with CPU
instruction specific transformations such as jump instruction modification. [1, 2] Compression
of executable code is mainly used for lowering bandwidth usage on transfer and decreasing
storage needs in embedded devices.

The compiled code can be split into so called basic blocks, sequences of instructions ending
with a single control transfer instruction. The internal program representation used to facili-
tates our program transformations is the Control Flow Graph. This graph contains basic blocks
as nodes, and potential control flow paths as edges.

In my work I show, that reordering instructions using data flow constraints can improve
code compression, without changing the original behavior of the code. Using the data usage
obtained from the analysis of the disassambled code, a basic, local data flow graph can be
produced. A basic block instruction data flow is shown on figure 3. , each instruction is in a
separated box, the original position is the code is the first line, the actual instruction is in the
second line. The arrows represents data flow within the basic block, indirect dependencies are
hidden.

Figure 3: Data dependency graph in a basic block

The order of these instructions can be different from the original, and still the reordered code
will be equivalent with the original (in the state machine sense).

In my work I distinguish two kind of data affection (read, write), and use 27 data types
include registers: 16 basic x86 registers, 11 eflags, andmemory data. The memory data refers to

47



Figure 4: Compressed code size change

any kind of memory read/write including stack instructions. The generated control flow graph
has a control flow instruction at the end of each basic block, these instructions are condition and
unconditional jump and call instructions are treated as if they write every data type. Among
x86 instructions only control flow instructions have relative to current address pointers, that
is why reordering instructions can be done by simply changing the instruction’s order. The
control flow instructions always remain at the end of each basic block.

The complexity of a function is a product of all basic block instruction count within a func-
tion. The code generates all possible reordering using depth first search, dependency rules are
checked on each search iteration. When all the possible reordering are generated, two different
data compression methods are evaluated.

In my work I use the latest stable gzip and lzma software to compress the produced code.
Repeating the reordering and compression test on every function of a binary file, a more com-
pressible code can be produced, without modifying the data flow. Using gzip, the compressed
code for an avarage function is 0.71% smaller than with the original instruction ordering. Re-
sults are even better using lzma, the avarage gain is 1.13%.

A detailed statistics on the compressed code size change can be seen on figure 4. The con-
clusion is that, more than 40% of functions can have a better compressable reordering than the
original one.

References

[1] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolenc, and Konsta Karsisto. Sur-
vey of code-size reduction methods. ACM Comput. Surv., 35(3):223 - 267, September 2003.

[2] Wenrui Dai, Hongkai Xiong, and Li Song. On non-sequential context modeling with ap-
plication to executable data compression. In Data Compression Conference, 2008. DCC 2008,
pages 172 - 181, march 2008.

48


