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Let A = (aij)m×n be a binary matrix of size m × n. The indices 1 ≤ i1 < i2 ≤ m and
1 ≤ j1 < j2 ≤ n form a switching component in A, if either ai1j1 = ai2j2 = 1 and ai1j2 = ai2j1 = 0,
or ai1j1 = ai2j2 = 0 and ai1j2 = ai2j1 = 1. In other words, a switching component is a 2 × 2
sub-matrix of A with exactly two 1-s in its diagonal and two 0-s in its antidiagonal, or vice
versa.

Switching components play an important role in image reconstruction and lossless image
compression. The absence of switching components in the matrix is a necessary and sufficient
condition for the unique reconstruction of the matrix from its horizontal and vertical projec-
tions, i.e., from the row and column sums of the matrix. Therefore, in that case the binary
image represented by the binary matrix can be stored in a (lossless) compressed form by those
two projections. However, if the matrix contains switching components, there is still a chance
to reconstruct the matrix uniquely, if properly chosen elements of the matrix are stored as well.
One can store, e.g., the positions of 0-s which need to be inverted into 1-s in order to make
the matrix switching component free. These positions are called 0-1 flips. Then, the aim is to
find the minimal number of flips needed to achieve uniqueness. Unfortunately, the problem is
generally NP-complete, thus there is no efficient exact algorithm to solve it, unless P = NP.

Switching components are also important in biogeography, where matrices represent the
presence or absence of certain species (rows) on certain locations (columns). Here, the so-
called nestedness is a relevant measurment of the matrix, which has a strong connection to the
0-1 flips.

In this paper we show that the minimal number of 0-1 flips can be found by determining
the proper ordering of the columns regarding a certain filling function, rather than searching
through matrix elements and switching components. Based on theoretical results, we develop
two deterministic, polynomial-time heuristics to minimize the number of 0-1 flips. We compare
those algorithms to another well-known ones in the literature, both on artifical random binary
matrices and real-life biogeographical matrices. We conclude that the algorithms searching for
proper column permutations perform better, both in the number of 0-1 flips and running time,
especially on sparse matrices.
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