
A scalable parallel boosting scheme for bulk synchronous parallel
environments

Sándor Kazi and Gábor Nagy

Under the pressure of the several V-s (volume, velocity, variety, etc.) of BigData [1] a com-
mon approach is to use distributed computation frameworks on top of distributed filesystems.
The open source flag-carrier of this approach is Hadoop which has transformed from an open-
source project to a widely applied business solution in the last few years. Machine learning
possibilities on top of Hadoop is basically identified by the somewhat limited capabilities of
Mahout, a machine learning library for Hadoop, and the programming capabilities of a user.
However MapReduce has disadvantages when it comes to iterative task execution [2]. There-
fore a large set of machine learning algorithms call for a different approach. A possible way
to implement distributed iterative machine learning algorithms on top of the Hadoop infras-
tructure (overcoming the limitations mentioned before) is to use the BSP computation model
(designed by Leslie Valiant [3] in the early ’90s and revisited by Google in 2010 [4]). This model
is supported by two Hadoop packages now: Apache Giraph (mainly for graph processing)
and Apache Hama. If any dimension of the data (including its velocity, etc.) is too much for
one node to handle these distributed frameworks can provide scalable parallel implementation
possibilites.

We hereby present a scheme to create distributed versions of a boosting algorithm using
the BSP model. The idea of boosting comes from the task of training a set of weak learners to
form a strong learner, a popular representative of this meta modeler group is Gradient Boosting
which uses a gradient based method to calculate the new labels for each weak learner to use
for training. One of the most (or the most) common weak learners used with gradient boosting
are Decision Trees, the abbreviation GBDT refers to this construction [5, 6]. To introduce the
scheme we use GBDT in our demonstrations, although the approach can be similarly applied
for some other boosting algorithms.

Figure 4: A schematic representation of the parallel GBDT training process.

The data is presumed to be distributed among multiple nodes, several factors are considered
to ensure efficent execution of the GBDT training. Some of the nodes should have one of the
two special roles, the role setting can be mapped to the data distribution setting. A schematic
representation of the parallel GBDT training process is presented on figure 4: each row/column
represents nodes having parts of the same data row/column. Residuals are distributed in the
first step, statistics are gathered in each column in the second, the best split for each column
is broadcasted and the global best split is selected afterwards. Then the leaf is updated using
the new split description at the nodes having that column. If the tree is not completed yet
we restart from statistics gathering (but for the new leafs only) otherwise the model is updated
with the current tree (with appropriate multipliers calculated for each leaf). Every new iteration
of GBDT starts with a new residual calculation step. Most of these can be executed in parallel
and can be efficiently balanced to minimize waiting times by (even dynamic) distribution of
the data.

29



The efficiency of the parallel setting can depend on the properties of the dataset, the distri-
bution setting and the loss function. Communication costs in this scheme can be and should
be minimized, this can be done in several ways. Some of these methods can guarantee the
model to be the same as it would be in a non-distributed approach, some others (like the his-
togram setting of Ben-Haim and Tom-Tov [7]) are approximations but operate without reason-
able degradation in efficiency [8].

Acknowledgements

This work is supported by the grant: FUTURICT, TÁMOP-4.2.2.C-111KONV, "Financial Sys-
tems" subproject.

References

[1] D. Laney (2001-02-06). The Importance of ’Big Data’: A Definition. Gartner.

[2] K. Lee, Y-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data processing with mapre-
duce: a survey. SIGMOD Rec., 40(4):11–20, January 2012.

[3] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33, no. 8,
pp. 103–111

[4] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, ser. SIGMOD ’10. New York, NY,
USA: ACM, 2010, pp. 135–146.

[5] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics and Data Analysis,
vol. 38, pp. 367–378, 1999.

[6] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”The Annals
of Statistics, vol. 29, no. 5, pp. 1189–1232, 10 2001.

[7] Y. Ben-Haim, E. Tom-Tov, “A Streaming Parallel Decision Tree Algorithm,“ The Journal of
Machine Learning Research, vol. 11, 3/1/2010, pp. 849–872

[8] S. Tyree, K. Q. Weinberger, K. Agrawal, and J. Paykin, “Parallel boosted regression trees for
web search ranking,” in Proceedings of the 20th International Conference on World Wide Web,
ser. WWW ’11. New York, NY, USA: ACM, 2011, pp. 387–396.

30


