
Derivable Partial Locking for Algebraic Data Types

Boldizsár Németh and Zoltán Kelemen

Concurrency is one of the most actively researched fields of Computer Science. Writing
concurrent programs is challenging. The causes are the need for synchronization and solving
possible race conditions and deadlocks while avoiding to unnecessary waiting and overhead.
This can be very difficult when a transaction needs to lock multiple data elements, even with
using previously defined concurrent data structures [1].

Algebraic Data Types are composite data structures that naturally support pattern match-
ing. When the type is parametric then the ADTs support writing generic algorithms without
additional complexity.

The integrity of the program data can be archived by providing locks for a data structure
or using concurrent data structures. Central locking is a safe strategy to avoid race conditions,
but it has a high cost because globally used objects are frequently accessed by different threads.
Hierarchic locking allows transactions to lock exactly the data elements that they need [2]. This
makes small transactions take small locks and work in parallel without waiting for each other.

This article focuses on a method that helps the implementation of thread-safe programs with
ADTs. By transforming the data model of the application to thread-safe data structures with
a built-in locking mechanism, a programmer can focus on the business logic of his application
when writing the program [3].

First, we need to transform the original ADT to the thread-safe version. For this, the pro-
grammer can configure what parts of the data structure should be locked. Too many locks
cause performance loss. Second, we define a frontend to access the locked parts of the data
structure. This must be done with minimal syntactical noise, to ease the development of the
application.

We implement our solution to this problem in Haskell. We use the Haskell concurrency
primitive mvar [4] to create a concurrent version of the data model. Two tools are inspected
that are capable of transforming the data structure to a thread-safe version. The generics of
GHC provide a way to derive type class instances for ADTs, like how it can be done with built-
in type classes. This can be done by decomposing the structure of the ADT and defining the
meaning of the functions on these primitive blocks. The second tool is the Template Haskell
compiler extension. With TH the internal representation of the program can be inspected and
modified. This grants more freedom to transparently change the program, but there is the
danger of confusing users and committing errors while transforming the program.

Acknowledgements

Supported by EITKIC 12-1-2012-0001.

References

[1] Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin Vechev, and Eran Yahav.
2011. Testing Atomicity of Composed Concurrent Operations. In Proceedings of the 2011
ACM international conference on Object oriented programming systems languages and
applications (OOPSLA ’11). (51-64).

[2] Goetz Graefe. Hierarchical locking in B-tree indexes.

[3] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. 2012. Con-
current Data Representation Synthesis. Proceedings of the 33rd ACM SIGPLAN conference
on Programming Language Design and Implementation. Pages 417-428

47



[4] Simon Peyton Jones, Andrew Gordon, Sigbjorn Finne. 1996. Concurrent Haskell. 23rd ACM
Symposium on Principles of Programming Languages.

48


