
x86 instruction reordering and split-stream compression benchmark

Zsombor Paróczi

Binary executables are the result of the compilation process, which produces machine code,
initialized and uninitialized data and operation system specific headers from source code.

Runtime executable compression is a method which uses standard data compression meth-
ods and binary machine code transformations to achieve smaller file size, yet maintaining the
ability to execute the compressed file as a regular executable. In our work we only focus on
Intel x86 instruction set with 32bit registers, which mainly used in personal computers. In this
paper we perform a benchmark on different compressions using various binary transforma-
tions, the main contributribution to the field is (i) testing Zopfli on binaries and (ii) benchmark
the instruction reordering method combined with split-stream algorithm.

Method Based on Homepage

Aplib LZ-based http://www.ibsensoftware.com/

Gzip deflate (LZ + Huffman) http://www.gzip.org/

LZMA Lempel–Ziv–Markov chain algorithm http://www.7-zip.org/sdk.html

Zopfli deflate based https://code.google.com/p/zopfli/

Table 1: Compression methods

For our benchmark we selected four different compression methods, they can be seen in
Table 1. Besides of the common algorithms widely used in Windows executable compression
programs [1], we also added Zopfli to the benchmark. [3]. All of the data compression algo-
rithms are lossless. In our benchmark we tested these compression method on various sample
executables (details in Table 3) in four test cases (i) without modification (ii) using instruction
reordering only (iii) using split-stream only (iv) the combination of both method. The combi-
nation of these two methods are: executing the instruction reordering algorithm than using the
split-stream method before the compression. The (i) test case serves as a baseline for evaluation
the improvements, the other three uses binary machine code transformation methods.

Instruction reordering is a method, which modifies the order of the instructions inside a basic
blocks using data flow constraints, this reordering can improve code compression with-
out changing the behavior of the code [5].

Split-stream is an algorithm that initially partitions a program into a large number of sub-
streams with high auto-correlation and then, heuristically merges certain sub-streams in
order to achieve the benefits provided by classical split-stream. It can reduce the increase
in compression ratio which typically occurs when a PPM-like algorithm compresses small
amounts of data [4]. The actual implementation was developed by Fabian Giesen for the
compression program kkrunchy [2].

The implementations didn’t use parallel processing methods, each compression method /
machine code transformation method was run in a single thread mode on the same machine.
We analyzed both the compression time and the result size, in Table 2 you can see each meth-
ods’ runtime on the nodejs binary. The running time of the compression is influenced by two
major factors: the compression method performance and the permutation count for the in-
struction reordering. Decompression is not effected by the permutation count of instruction
reordering, the compression has to be done once for each binary.

52



instr. reordering split-stream combined

Aplib 2877 3 3224

Gzip 1445 <1 1497

LZMA 2047 2 3620

Zopfli 7426 15 29413

Table 2: Compression times in seconds

Name OS Compiler Source

libc-2.13.so (-0ubuntu13.1) Ubuntu gcc http://packages.ubuntu.com/natty/libc6-i386

unzip (6.0-4) Debian gcc http://packages.debian.org/squeeze/unzip

libconfig.dll (1.4.8) Windows VS2008 http://www.hyperrealm.com/libconfig/

node.js (0.8.8) Mac llvm http://nodejs.org/dist/latest/node-v0.8.8-darwin-x86.tar.gz

Table 3: Binaries in the benchmark

Figure 6: Compressed binary size compared to the uncompressed binary

On Figure 6 you can see the compressed binary sizes compared to the original binary size
for the unzip binary. Each method produces significant improvement over the compressed
original data.

The combined method gives an average of 9.46% smaller compressed file, than without any
binary transformation. The gain by compression method: 6.8% in Aplib, 9.7% in Gzip, 8.7% in
LZMA, 12.64% in Zopfli.

References

[1] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolenc, and Konsta Karsisto. Sur-
vey of code-size reduction methods. ACM Comput. Surv., 35(3):223–267, September 2003.

[2] Fabian Giesen. Working with compression. Online. Last accessed: 2013-01-15, 2006. Break-
point 2006.

[3] Lode Vandevenne M.Sc. Google Inc. Jyrki Alakuijala, Ph.D. Data compression using zopfli.
February 2013.

[4] Steven Lucco. Split-stream dictionary program compression. SIGPLAN Not., 35(5):27–34,
May 2000.

[5] Zsombor Paroczi. x86 instruction reordering for code compression. Acta Cybernetica,
21(1):177–190, 2013.

53


