The Connection of Antipatterns and Maintainability in Firefox
Dénes Ban

The theory that antipatterns have a negative effect on source code maintainability is widely
accepted but has relatively little objective research to support it. We aim to extend this research
by analyzing the connection of antipatterns and maintainability in an empirical study of Fire-
fox, an open source browser application developed in C++.

First, we selected 45 evenly distributed sample revisions from themaster and electroly-
sis branches of Firefox between 2009 and 2010 — approximately one revision every two weeks.
These provided the basis for both antipattern detection and maintainability assessment. We
extracted the occurrences of 3 different antipattern types — Feature Envy, Long Function and
Shotgun Surgery — defined by Brown at al. [1], using the same tool we previously published [2].
The antipatterns from the literature were interpreted in this case as violations of specific metric
thresholds and/or structural constraints. E.g., for a method to be considered an instance of
Feature Envy, it had to have more attribute accesses than a configurable limit while simulta-
neously the ratio of these accesses referring to foreign — i.e., non-local — attributes had to be
higher than another limit. This would lead us to believe that the method itself is interested in
attributes, but mainly not the ones belonging to its parent class, hence we call it “envious” of
the other classes.

After extracting all the antipatterns, we summed the number of matches by type and divided
them by the total number of logical lines of the subject system for each revision to create new,
system-level antipattern density predictor metrics. This division makes sure that a system can
be considered more maintainable than another even when it has more antipattern instances
given that the ratio of these instances to the size of the system is less.

Next, we computed corresponding maintainability values using a C++ specific version of
the probabilistic quality model published by Bakota et al. [3], which calculates increasingly
more abstract source code characteristics by performing a weighted aggregation of lower level
metrics according to the ISO/IEC 25010 standard [4]. Its final result is a number between 0
and 1 indicating the maintainability of the source code.

After this, we checked for correlations between the maintainability values and each of the
different antipattern densities to unveil a connection between the underlying concepts. We
found that Feature Envy, Long Function and Shotgun Surgery had coefficients of -0.95, -0.94
and -0.36 for Pearson’s, and -0.83, -0.85 and -0.57 for Spearman’s correlation, respectively. These
tigures show strong, inverse relationships, thereby supporting our initial assumption that the
more antipatterns the source code contains, the harder it is to maintain.

Finally, we combined these data into a table applicable for machine learning experiments,
which we conducted using Weka [5] and a number of its built-in algorithms. All regres-
sion types we tried for predicting source code maintainability from antipattern information
— namely, Linear Regression, Multilayer Perceptron, REPTree, M5P and SMO Regression —
reached correlation coefficients over .93 while using negative weights for the antipattern pre-
dictors in their built models. This not only means we can give precise estimations for the
maintainability of the source code using its antipattern densities alone but also emphasizes
their reversed roles.

In conclusion, we believe that this empirical study is another step towards objectively prov-
ing that antipatterns have an adverse effect on software maintainability.

References

[1] Brown, W.J., Malveau, R.C., McCormick III, LH.W., Mowbray, T.J.: AntiPatterns: Refactor-
ing Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc., 1998.

6



[2] Dénes Ban, Rudolf Ferenc: Recognizing Antipatterns and Analyzing their Effects on Soft-
ware Maintainability, In Proceedings of the 14th International Conference on Computational Sci-
ence and Its Applications, 2014.

[3] Tibor Bakota, Péter Hegedtis, Péter Kortvélyesi, Rudolf Ferenc, and Tibor Gyiméthy: A
Probabilistic Software Quality Model. In Proceedings of the 27th IEEE International Conference
on Software Maintenance, 2011.

[4] ISO/IEC: ISO/IEC 25000:2005. Software Engineering — Software product Quality Require-
ments and Evaluation (SQuaRE) — Guide to SQuaRE. 2005.

[5] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H.
Witten: The WEKA Data Mining Software: An Update. SIGKDD Explorations, 2009.



