
An Automatic Way to Calculate Software Process Metrics of GitHub
Projects With the Aid of Graph Databases

Péter Gyimesi

Bug prediction is a popular research area nowadays. There are many great studies about
how to characterize software bugs and how to recognize bug prone code parts. The characteri-
zation [1] of such bugs can be done with classic product metrics, with software process metrics
or with some metrics of a different nature like textual similarity. Product metrics are extracted
from the structure of the source code, for example: lines of code, cyclomatic complexity, etc.
Software process metrics are computed from developer activities. The most common ones are
based on the number of previous modifications, number of different contributors, number of
modified lines and the time of the modifications.

All of these metrics can be computed on different granularity levels (file, class, method).
Product metrics are mainly calculated on file and class level, but with the continuously im-
proving technology the method level is becoming more frequent. There are many great tools –
some of them are free – that can produce these metrics for projects of different programming
languages. Previous researches [2] have shown that software process metrics are generally bet-
ter bug predictors than product metrics, however, tools that can compute these metrics are not
widespread. It can be due to the difficulties of storing and processing of the historical informa-
tion. Another problem with process metrics is that to compute them on class or method level
every version of the source code has to be analyzed and the modified methods and classes have
to be extracted, which is a challenging task.

In the last few years, the popularity of graph databases increased due to the improving tech-
nologies behind them. The historical data of software can also be represented as a graph, so
studies [3] started to examine the use of these graph databases in software quality too, espe-
cially in the calculation of software process metrics.

Our goal is to present an automated way of calculating software process metrics with the use
of graph databases. We chose GitHub as data source, because it has an open API to access the
history of many open-source Java projects. For the database we selected Neo4j and to analyze
the source code and extract the source code elements we used the SourceMeter static analyzer
tool.

For this research, we collected the process metrics from the literature and we reproduced
the calculation of these metrics in cypher query language. With this language process metrics
are easy to formulate and these queries can be processed by Neo4j. For a given GitHub project
version it can compute the process metrics on file, class and method level. The list of these
metrics is easy to extend due to the modularity of the created framework.

With this tool we analyzed almost 18 000 versions of 5 Java projects from GitHub. These
projects have a total of 28 release versions that are selected with six-months-long intervals. We
computed the process metrics of these projects and we built a bug database with the use of our
previous researches. For each release version it contains the source code element at file, class
and method level with the corresponding process metrics and bug numbers.

References

[1] Radjenović, Danijel, et al. "Software fault prediction metrics: A systematic literature re-
view.", Information and Software Technology 55.8 (2013): 1397-1418.

[2] Rahman, Foyzur, and Premkumar Devanbu. "How, and why, process metrics are better.",
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

27



[3] Bhattacharya, Pamela, et al. "Graph-based analysis and prediction for software evolution.",
Proceedings of the 34th International Conference on Software Engineering. IEEE Press, 2012.

28


