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Nowadays, image classification is an indispensable tool for categorizing the huge amounts
of visual contents both online and offline. The number of images available online increases
with the rapidly growing internet usage. Besides, numerous electronic devices are capable to
take a digital picture (e.g. cameras, telephones and so on), furthermore, smart devices are a
click away to upload and share those pictures. This results massive data warehouses that are
need to be structured, i.e. categorized. The classification of images requires labeled instances,
but usually these contents are unlabeled, and labeling them is an expensive manual process.
Active learning [1] is a way to address this problem since it selects a subset of the data by
iteratively querying the most informative image(s) from the unlabeled ones, and then builds
the classification model based on this subset instead of the whole data. In this way, the active
learning algorithm aims to label as few instances as possible (i.e., minimizing the labeling cost)
while it attempts to retain the same level of accuracy that could be achievable by using the
total dataset. The most important question is how to estimate the informativeness of unlabeled
instances, since different query strategies may lead to better or worse classification accuracy,
compared to random sampling. There are many various proposed strategies in the literature,
e.g. uncertainty sampling [2], query-by-committee [3], expected model change [4], expected
error reduction [5]. Uncertainty sampling is a widely used, however the simplest query strat-
egy framework, which happens to query the instances with least certainty about their labels.
The focus of our work was to improve the accuracy through amplifying this technique by com-
plementing it with a distribution analysis on the labeled dataset. For this purpose we defined
a new penalty metric (see Eq. 1) which gave us an informativeness value for each unlabeled
image:
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where j* denotes the estimated category of the j'* image, and CTR;- increases with each
iteration of queries where the received category is other then j*. We merged these penalty
values with the ones coming from uncertainty sampling, and this results the final decision
scores. The advantage of this modification is a sort of balance between the classes of labeled
instances. We demonstrated the efficiency of the proposed approach on two large datasets;
on the PASCAL VOC2010 [6] training and validation data, and on the Caltech101 [7] image
collection. We evaluated the Accuracy and the MAP (Mean Average Precision) metrics for this
purpose. As can be seen in Fig. 1, our proposed approach (green line) outperforms both the
general uncertainty sampling (red line) and the random sampling (blue line) methods.
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Figure 1: Evaluation of the results on the Caltech101 and PASCAL VOC2010 datasets
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