
On the Efficiency of Text-based Comparison and Merging of
Software Models

Ferenc Attila Somogyi

The importance of model-driven engineering in software development has been steadily
increasing in the last few years, as models are more often used in the industry for various pur-
poses. Models can be described and edited via either a graphical or a textual interface. The
graphical approach usually makes the model more easily readable, but writing efficiency does
not scale well with model complexity. It is the more convenient and common approach to use,
especially if the model has to be interpreted by third-party users as well. On the other hand,
the textual approach is rarely used compared to the graphical one. It can be harder to read at
first (especially for third-party users), but writing efficiency scales well with model complex-
ity. Generally speaking, using a textual representation to describe and edit the model pays off
when the model is substantial in size or complexity, especially if there are efficient develop-
ment tools available for the editing process. The availability of such tools results in the editing
process being more similar to traditional source code-based development. During source code-
based development, teamwork is supported by version control systems that help manage the
different versions of source code files. The same idea can be applied to models and their textual
representations in order to facilitate teamwork during model-driven engineering. In previous
work [1], we briefly presented a method that can be used to compare and merge the textual
representations of software models. We also compared this method to other, already existing
model comparing or merging approaches. In addition to the raw texts, the method uses the
abstract syntax trees (AST-s) built from the texts as basis of the comparison. This makes the
comparison a lot more accurate, as AST-s give more accurate information than the raw texts.
The textual representations are also needed though, as discovering some conflicts require tex-
tual comparison in addition to comparing the AST-s. The method is not dependent on any
particular modeling environment or formal language used to describe the textual representa-
tions. This is achieved by demanding certain operations from the parser of the language. Thus,
the method can be the foundation of conflict handling in version control systems that support
the textual representations of models. The main difference between the presented method and
other, specialized model comparing and merging approaches (like EMF Compare ) is general-
ity, meaning that most approaches only work with a specific modeling environment. Another
difference is the fact that the presented method aims to compare the textual representations
instead of the structure of the model. This results in more overall accuracy while still main-
taining generality (with certain restrictions). In this paper, we examine the different steps of
the method in detail with the focus being on efficiency and performance. These are important
considerations if the method is to be used in real version control systems. We also consider
and review alternatives to different steps of the method by examining their advantages and
disadvantages.

References

[1] F.A. Somogyi. Merging Textual Representations of Software Models, MultiScience - 2016.
microCAD International Multidisciplinary Scientific Conference, under publish.

[2] EMF Compare. https://www.eclipse.org/emf/compare/.

58


