
Axiom-based property verification for P4 programs

Gabriella Tóth, Máté Tejfel

Abstract: We produce an axiom-based program properties verification method for P4 programs. P4 is a
special, domain specific, declarative programming language to develop network packet forwarding. P4
is quite new, and different from general-purpose programming languages so it is an important idea to
understand its behavior and to verify it. The operational semantics of P4 is reachable in K framework,
so there is an opportunity to do its verification based on its operational semantics, but it is a low level
solution, therefore the proof of complex properties can be too difficult and costly. So we would like to
verify the program in a higher abstraction level, in which we would introduce axioms, which are correct
in the operational semantics. Using these axioms we can create easier and more transparent proof.

Keywords: P4, K framework, verification, operational semantics

Introduction

This paper analyze P4 programs and program properties. We chose P4, because it is a new, special,
domain specific, declarative programming language, which is created for developing network packet
forwarding. P4 has a reachable operational semantics in K framework, so we can start the verification
based on these semantics rules. But the disadvantage of this way is that, it is a low level solution, there-
fore the proof of complex properties can be too difficult and costly. Consequently, we would like to
create a higher abstraction level with introducing operational semantics based axioms, to make an eas-
ier way for proof and to reach proof’s end sooner.
The above mentioned K framework is an executable semantic framework, in which we can add any pro-
gram language’s syntax and operational semantics for verify programs with symbolic execution [1][2].
The K uses configurations to follow the program states, and we can give the semantics rules as a relation
from configurations to configuration. The P4 operational semantics is given in this way, so our axioms
will be developed in the same style. Using these axioms we can produce an axiom-based program
property verification method for P4 programs.

The P4 language

P4 language is a new, domain specific, declarative programming language, which is created for a
target independent, protocol independent and reconfigurable way to develop network packet forward-
ing [3][4]. The board members of the P4 language consortium come from such a famous institutions as
Stanford University, Princeton University and Google. So far, there are two version of the language, the
P414 and the P416. P414 has a available operational semantics in K framework [5], so in the paper this
version will be used.

An example for P4 program

In Figure 1. we can see a simple P4 program. This example code snippet demonstrated those lan-
guage elements of P4 that are essential for understanding our results presented in this paper. To give
the types of headers is an important part to handle the packets. We can create these elements as a
header_type, with the name and contained fields and the bit-width of fields. With these header types
we can define header instances, with which we can handle the real headers in runtime. In our example
these elements appear in the first and the third line. In the first line one header type is defined, which
name is simple_header_t , and has 3 field, the field_a and filed_c with 8 bit-width and the field_b with 16
bit-width. This type has an instance, with simple_header name (line 3).

We need to have parser in our programs, which gives how the first part of the packet have to be
divided into headers. In the example the parser (lines 5-8) unwraps the header simple_header .

The actions contain the operations which can be executed in the headers. There are predefined prim-
itive actions, and the developer can also compose new actions build up from sequences of primitive
actions. In Figure 1. there is only one action named simple_action , which calls one modify_field . The

80



Figure 1: A simple P4 input file

modify_field is a primitive action, and it tries to change the first parameter’s value for the second param-
eter, so here, we try to change the value of the field named field_b of the header named simple_header
to 3.

The declarations of P4 ’match+action’ tables define what actions can execute based on the processed
packet’s values. This element has a name, a ’reads’ and an ’actions’ part. In the ’reads’ we can show those
header instance’s field, which we would like to use during matching, and the type of matching. In the
’actions’ part there are the set of executable actions. In our simple program, there is one ’match+action’
table (lines 12-15) as simple_table , and it would like to match the simple_header ’s field_a field in the
exact way, and it can execute one action, the above mentioned simple_action .

After the analysis of the packet, the next step is the execution of the control function starting with the
ingress control function. These functions define the sequence of the tables’ execution for the packet, and
define how to continue the execution after a matching. In our simple program there is only one ingress
control function, which calls our table’s execution in the most simple way.

Figure 2: A simplified illustration for P4 behavior

The P4 programs’ behavior

P4 has a different behavior as other common programming languages. P4 programs contain only
declarations about the packets’ headers, parsers, actions, etc. In Figure 2, we can see a simplified illus-
tration for its conduct. First, the packets go through the parser and that creates a set, which contains
valid header instances for the packet. Initially ’match+action’ tables are empty, just those information is
given, which is in the declaration. There is an external controller, which fills these tables with concrete

81



pairs. One pair contains a matching value and the action, which have to be executed when the matching
is fine. The uploaded ’match+action’ tables operate on parser made set, and this process is based on the
control functions. After all processing finished, the resulting packet will be transmitted.

Motivation

A simple way for the verification, if we analyze concrete P4 programs, like a modify_field effect in a
given value of a header instance’s field. For example in Figure 1, there is only one action, which modify
the value of field_b to 3 (line 10). We could examine the value’s changing. If in the initial state field_b has
any given value, then in the final state its value will be the same or 3. A program property, where we
work with concrete values, and concrete elements, can be proved easily using the operational semantics.

In the next step, we can try to go further, and generalize the property. If initially we have a given
field with any value and a program contains one modify_field action for this field with a new value,
then the program would go to a final state, where the value of the given field is the new one. Using
operational semantics’s rules it would be a complex proof, because it would work with meta-variables
over the value and field, with which more calculations of inside steps would not be obvious. There is
another properties, which could be examined, if initially we have a given field and a program contains
only one modify_field action with another name of fields, then the program would go to a final state,
where the value of the given field will be the same. It seems a similar statement, but its proof is really
hard using only the operational semantics’s rules.

In K framework for the symbolic execution we need to give a file, which contains the behavior of
controller, so we need to give the concrete filling of the ’match+action’ tables. In the proofs of previous
properties, which uses only operational semantics, there would be rules which based on the controller’s
behavior. The controller can only call actions, which were declared in the used P4 program, therefore
an even further way to say statements about a P4 program is that if we do not deal with the controller,
and say properties only about P4 declarations. For instance, a statement could say, if we have actions,
which contains only modify_field primitive actions, and there is a field, which is not appear in any
first parameter of modify_fields, then the value of this field won’t change after any execution, it does not
matter how the tables looks like, and what type of actions will be run, because we do not have any action,
which would change its value. In this point, we need to go a higher abstraction level, because these type
of statements cannot be proved using only operational semantics. In this level instead of symbolic
execution, our prove based on some operational semantics’s rules and axioms, or in an even higher
level only axioms with deduction rules. In this way it can be an axiomatic semantics [6]. The introduced
axioms will be defined and proved based on the operational semantics, and sometimes the operational
semantics’s structure is not enough for the proof, so we will supplement the rules and configurations.

The ’Unchanged Field’ axiom

In the example we analyze the property, when the value of examined field is unchanged. Using only
the operational semantics’s rules, the proof of this property is complicated, so we introduce an axiom
for easier proof, which contains conditions in the upper part, and a Hoare triple in the lower part:

f ∈ instanceF ields(S) and f /∈ modifiedF ields(S)

{f = X} S {f = X}

In the axiom, S is the examined program, X indicates any value of a field, instanceFields(S ) is a set of
fields, which appear in the program and modifiedFields(S ) is a set of fields, which value can be changed
during the program run. The modifiedFields contains those fields, which appear in the first parameter
of any primitive actions, because a field’s value can be changed only in this way. A field is identified by
the instance, which contains it, so an element of the two sets has instanceName.fieldName format.

The given axiom expresses that, if there is a field in the program and it is not in the modifiedFields
set, after the program run, its value will be the same as in the initial state.

Using this axiom in the case of the program introduced by Figure 1 (sign it with S1), we can easily
prove the stability of simple_header .field_a and simple_header .field_c. The two sets are computable:

instanceFields(S1 ) = {simple_header .field_a, simple_header .field_b, simple_header .field_c}

82



modifiedFields(S1 ) = {simple_header .field_b}.
The axiom’s conditions are true for simple_header .field_a and simple_header .field_c, so these fields

will not change during the execution of S1 program.

Acknowledgements

This work has been supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002).

References

[1] A. Ştefǎnescu, D. Park, S. Yuwen, Y. Li, G. Roşu: Semantic-Based Program Verifiers for All Lan-
guages. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’16), pages 74-91. ACM, Netherlands, 2016

[2] G. Roşu: K: A Semantic Framework for Programming Languages and Formal Analysis Tools. In
Dependable Software Systems Engineering, pages 186-206. IOS Press, Netherlands, 2017

[3] The P4 Language Consortium: The P4 Language Specification
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf, 2017

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A.
Vahdat, G. Varghese, D. Walker: P4: Programming Protocol-Independent Packet Processors. In ACM
SIGCOMM Computer Communication Review, pages 87-95, ACM, USA, 2014

[5] The P4 Language’s operational semantics in K framework:
https://github.com/kframework/p4-semantics

[6] R. D. Cameron: Axiomatic Semantics of Programming Languages. 2002

83


