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Abstract: We propose a refactoring tool for the Haskell programming language, capable of introducing
parallelism to the code with reduced effort from the programmer. Haskell has many ways to express
concurrency and parallelism. Moreover, Eden, a dialect of Haskell supports a wide range of features for
parallel and distributed computations. After comparing a number of possibilities we have found that
the Eval Monad, the Par Monad and the Eden language provide similar parallel performance. Our tool
is able to introduce parallelism by turning certain syntactic forms into the application of algorithmic
skeletons, which are implemented with the Eval Monad, the Par Monad and the Eden language.
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Introduction

When it comes to programming, there are various factors to keep in mind. First of all, the program
should accomplish the given task, but in the meantime it should be also efficient, furthermore the code
should be clean and readable. Focusing on the speed, we have several possibilities for improvement.
We often try to write efficient programs, which the compiler can further enhance with optimizations,
but after a point there is no way to speed up a sequential program: this is when parallelism comes to
mind.

The Haskell programming language has a wide range of possibilities to express parallelism. We have
analyzed some of these methods, such as the Eval Monad with its parallel evaluation strategies, the Par
Monad, and Eden, an extension of Haskell, a language with constructs for the definition and instantiation
of parallel processes. Our goal was to find the best among these not only in terms of speed up, but
also while looking at the ways these methods support parallelism – hence our final goal is to turn a
sequential program to parallel with a refactoring tool, with as little effort from the programmers’ side as
possible.

Options for Parallelism

As part of our research we have examined various methods to describe parallelism. From these, we
have compared three approaches in more detail through case studies of different complexity.

Evaluations Strategies

Pure parallelism in Haskell is achieved using only two primitives:

1 par : : a −> b −> b
2 pseq : : a −> b −> b

While par indicates that it may be beneficial to lazily evaluate the first argument in parallel with the
second, pseq forces this evaluation to actually take place. Although they are not too convenient to use,
with an extra layer of abstraction they suddenly become a great and simple tool to express parallelism.
This is achieved by introducing the simple idea of Evaluation Strategies, or Strategies for short [3]. A
Strategy is a function with the following simplified type:

1 type Strategy a = a −> Eval a
2 data Eval a = Done a
3 runEval : : Eval a −> a

Then we can define some basic strategies, like the monadic counterparts of the functions above, and
some more complex ones, such as parList – which evaluates the elements of a list in parallel –, and
many others. There is a great thing with these Strategies when we think about refactoring: a simple
construct lets us turn a sequential program into parallel without changing anything else in the code.
The example below shows how to create a function, which would map a function over a list in parallel:
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1 using : : a −> Strategy a −> a
2 x ‘using ‘ strat = runEval (strat x )
3 parMap f xs = map f xs ‘using ‘ parList rseq

The Par Monad

Another useful tool is the Par Monad [4], which is built around the concept of forking: the computa-
tion passed as the argument to function fork is computed in parallel. We can see this as a parent-child
evaluation, where the passed argument is computed in the child process, while the current computation
is executed in the parent process.

1 fork : : Par ( ) −> Par ( )

Adding once again an extra layer over this simple basic construct, we can have another great tool.
The communication among the processes is accomplished through IVars (I-structures), which are write-
once mutable reference cells with the operations put and get. Function put assigns a value to an IVar,
while get returns the value after the assignment takes place (and blocks until this happens).

1 new : : Par (IVar a )
2 get : : IVar a −> Par a
3 put : : NFData a => IVar a −> a −> Par ( )

By defining a common pattern that creates a child and then collects the result, spawn, we can easily
give the definition of parMap again, now using the Par Monad.

Eden

Eden is a parallel functional language, extending Haskell with constructs for creating and computing
processes in parallel [1].

1 process : : (Trans a , Trans b ) => (a −> b ) −> Process a b
2 ( # ) : : (Trans a , Trans b ) => Process a b −> a −> b

Here process creates the process abstraction, while (#) instantiates it. The evaluation of an expres-
sion like (process func) # arg leads to the evaluation of the argument arg on a new thread in
the parent process and will be sent to the child process which returns the result of func arg in a de-
mand driven way. The type context Trans a means that a has to be transmissible. The two constructs
described above are usually used in a combination resulting in parallel function application:

($#) :: (Trans a, Trans b) => (a -> b) -> a -> b
f $# x = process f # x

So once again we have the basic construct – but we can add an extra layer of abstraction to have a
convenient way of writing a parallel program.

Comparison

We have tested the performance of the above mentioned approaches on simple and more complex
problems [2, 5]. The achieved speed-up lived up to our expectations with all three approaches showing
good results. We also had to consider other factors as well, most importantly how complex it is with the
three approaches to introduce parallelism as code transformations to a sequential program.

After several case studies, we have found the three different methods equally convenient, so we
decided to support all the three. However, since Eden and its predefined algorithmic skeletons provided
a very nice abstraction layer, we have implemented these skeletons using the other two approaches in
order to provide a common ground for the parallelisation code transformations.
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General skeletons

To generalize over the three considered parallelization methods, we have introduced general algo-
rithmic skeletons. We have decided to define these skeletons in a language-independent manner. Our
restriction only lies in the necessary methods, such as map or parMap. Given these functions, we can
specify different algorithms in a general way on any traversable structures.

Function parMap can be considered the simplest skeleton, which takes a list and creates a process
executed in parallel for each of its elements. Of course, this naive version cannot be used in a general
problem where the length of a list is probably larger, large enough that the communication among the
processes would result in severe overhead. An improvement in our case is the farm skeleton which
distributes its input to a number of worker processes, just like in the Eden version. For this, we need
two new functions: one which distributes the elements, and another one which combines the results.
Traversable data structures will be denoted with curly braces, such as {Int}.

Distribute . {a} → {{a}}
Combine . {{a}} → {a}

Combine ◦Distribute ≡ Id, f . a→ b

Farm(f) ≡ Combine ◦ ParMap(Map(f)) ◦Distribute
Observe that we can allow the inside and outside structures in the domain of Combine and in the

co-domain of Distribute to be different: we can split a tree into a list of trees, for instance.
There are quite a few common parallel patterns which we can express with the general skeletons. We

have given definitions for reduction, for map-reduce, and for divide-and-conquer schemes.

Transformation to expressions

For each of our general skeletons we have defined their transformations to abstract expressions. At
this stage we have still stayed with the general-purpose solution, but we have also kept in mind that we
want to introduce code transformations in the Haskell Tools refactoring environment [6]. Therefore we
use expressions as represented in this tool. In order to have a better understanding of these expressions,
consider the following example.

3 + 2 . Expr

3 + 2 . Expr → Expr → Expr → Expr

Here 3 + 2 can be considered a simple expression, or we can look at it as a combination of three
expressions creating a new one. However, if we introduce the pattern of Operator on the (+) sign, we
can see the type signature of an infix application. If we introduce its pattern, we can give the type of the
addition as follows.

InfixApp ≡ Expr → Operator → Expr → Expr

3 + 2 . InfixApp

We have defined the syntactic occurrence of algorithmic skeletons using the Haskell Tools’ represen-
tation of Abstract Syntax Trees.

Refactoring

In order to provide a convenient way to refactor sequential Haskell programs into parallel, we have
extended Haskell Tools, a refactoring environment for Haskell programs [6] with support for paralleliza-
tion transformations.

Transforming a sequential code to parallel is just the first step. Ensuring that the parallel code runs
faster than the sequential one is also difficult. The costs of process creation and communication may can-
cel out the performance gains of parallel evaluation. A tool should help the developer make decisions
on which parallel skeleton, if any, to use in a given situation to achieve significant efficiency improve-
ment. Cost-directed refactoring [7, 8, 9] uses cost models to facilitate such decisions – our future work
will target this approach.
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