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Abstract: Measuring the similarity of the case and control group in clinical studies has always been an
important but also difficult task. Several statistics-based methods aimed at this exist but most of them
utilize dimension reduction or estimation, therefore, there are certain cases where they are not adequate.
In this paper, we propose 3 dissimilarity-based measures capable of evaluating case-control group pairs
without the loss of valuable information.
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Introduction

Observational studies in the field of social sciences, natural sciences and engineering are often based
on comparative analysis. In these cohort-based studies, people are classified into two independent
groups (case and control groups), and the conclusion is drawn on the basis of the similarities and differ-
ences between the two groups. Although the comparison-based scientific analyses significantly differ
in the applied methodology and study design principles [1], due to their comparative nature they have
strong scientific evidence [2]. Generally, the selection of the case group can be carried out based on
the study aims, but the determination of the control group has difficulties and it raises many questions
[3, 4]. Various methods have been proposed for the selection of the control group. Some methods utilize
randomized sampling or stratified sampling [5, 6], while others are based on propensity score matching
(PSM) [7] or on the selection of the k-nearest neighbors [8, 9]. All these methods try to form a control
group which contains individuals that are similar to the individuals of the case group in certain char-
acteristics, and in specific property or properties, they differ from them. But the measurement of the
similarity of the case and control groups is not a trivial task. In this paper, we give a short overview
of the applied similarity measuring approaches and propose three similarity measures to evaluate the
degree of similarity of equally sized case and control groups in the n-dimensional space.

The rest of the paper is organized as follows. Section 2 briefly presents the basic approaches applied
in this field and introduces our proposed measures. In Section 3, some comparative results are briefly
presented. Finally, conclusions are drawn in Section 4.

Evaluation of the similarity of the case and control groups

Measuring the similarity of groups used in comparative analyses is an important task. The evaluation
can happen by measuring the similarity of paired individuals from the case and control groups (paired
evaluation) or by assessing the similarity of the case and control groups (non-paired evaluation). Most
of the applied non-paired methods are Goodness of Fit (GoF) tests (e.g. Kolgomorov-Smirnov test,
Bhattacharyya distance, Matusita distance) [10] evaluating the distribution of the two groups. Using
a GoF test, it is possible to evaluate a one-dimensional distribution (that is the similarity of a certain
property), but it is nearly impossible for higher dimensions [11]. However, people as the elements of
the groups are characterized not by one but by many features. On the other hand, if the elements of the
control group are selected by propensity score matching, the similarity of the case and control elements
is measured again only in one dimension, namely as the dissimilarities of the propensity scores. As the
propensity score is an estimated value, the similarity measurement is made in a lossy compressed 1-
dimensional space, and not in the original feature space of the elements. Contrary to these methods, our
aim is to measure the similarity of the case and control groups in the original high-dimensional feature
space of the individuals. For this reason, we propose 3 dissimilarity measures: 2 for paired and 1 for
non-paired evaluation. These measures can be considered as a normalized average of dissimilarities,
but they differ in the interpretation of the term dissimilarity.

Paired evaluation

Nearest Neighbor Index
The first measure is called Nearest Neighbor Index (NNI) and it is quite strict. NNI checks for each
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attribute whether the case-control entity pairs are the closest neighbors to each other on that attribute.
Pair elements are determined by the applied matching method. For categorical features the dissimilarity
is 0 if the values of the attributes of the individuals are identical, otherwise 1. For continuous attributes,
the dissimilarity is 0 if and only if the sample-control pair is the closest to each other pursuant to the
examined attribute. Finally, the NNI is calculated as the average of the dissimilarities calculated in each
dimension.

Dissimilarity for categorical features:

dkij =

{
0 if aik = bjk
1 if aik 6= bjk

(27)

Dissimilarity for continous features:

dkij =

{
0 if

∣∣aik − bjk
∣∣ = min

(
|aik − blk|

)
, l = 1, 2, ..., N

1 if
∣∣aik − bjk

∣∣ > min
(
|aik − blk|

)
, l = 1, 2, ..., N

(28)

Nearest Neighbor Index:

NNI(A,B) =

∑
(ai,bj)∈P

∑n
k=1 d

k
ij

nN
(29)

where ai is an element of the case group (ai ∈ A), bj is an element of the control group (bj ∈ B),
(ai, bj) ∈ P yields that they are matched case-control pairs, aik yields the value of the k-th dimension of
ai, bjk analogously for the bj element, n is the number of the characterizing features and N yields the
number of individuals in either of the groups.

Global Dissimilarity Index
It is apparent that NNI checks for every dimension if the case-control pairs are closest to each other
in that dimension, however, it does not consider the distance between them. The Global Dissimilarity
Index (GDI) is a paired measure that is meant to account for this weakness.

GDI measures the dissimilarity for nominal features as the function of the number of different values,
for ordinal features as the difference of ranks and for continuous features as the normalized distance.
The calculation of GDI happens analogously as for NNI (Equation 29). The statement about paired
elements still holds.

Dissimilarity for nominal features:

dkij =

{
0 if aik = bjk
1

Mk
if aik 6= bjk

(30)

Dissimilarity for ordinal features:

dkij =





0 if aik = bjk∣∣∣raik
−rbjk

∣∣∣
Mk−1 if aik 6= bjk

(31)

Dissimilarity for continuous features:

dkij =

∣∣aik − bjk
∣∣

max (slk)−min (slk)
, s ∈ {A ∪B}, l = 1, ..., 2N (32)

where Mk is the number of possible values along the k-th dimension, r yields the ordered rank for the
ordinal attributes, min (slk) is the minimal value and max (slk) is the maximal value along the k-th di-
mension.

Non-paired evaluation

The above-mentioned methods measure the dissimilarity by determining the pairwise dissimilarities
for each case-control pair. It is possible that only the similarity of the distributions of the characterizing
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features counts and the pairwise matching of the individuals is not relevant. On that score, we imple-
mented a distribution-based measure called Distribution Dissimilarity Index (DDI). DDI is based on
the histogram disparities of the case and control groups in each dimension. This method relies on the
absolute deviation of the frequency of each property value relative to the size of the control group and
the number of characterizing features. If the individuals are characterized by continuous values, the
values have to be discretized before the calculation of the frequency values of the histogram.

DDI(A,B) =

∑
k

∑
v∈Vk

∣∣fAkv − fBkv
∣∣

nN
, k = 1, ..., n (33)

where fAkv yields the frequency of the v-th value in the k-th dimension in the case group, fBkv analogously
for the control group, Vk is the number of possible values along the k-th dimension.

Results of a short case study

To demonstrate the previously presented measures, we generated a benchmark dataset containing
1000 elements characterized by 8 variables (2 binary, 2 ordinal, 1 nominal and 3 continuous): 1 Bernoulli
random variable with a probability value of 0.5, 1 Bernoulli random variable with a probability value
of 0.3, 1 binomial variable with 3 trials and a probability value of 0.5, 1 uniform discrete variable in
the range of [0, 5), a uniform discrete variable in the range of [0, 4), 1 uniform variable in the range of
[0, 2), 1 variable with normal distribution with a mean of 2 and standard deviation of 0.5 and 1 variable
with normal distribution with a mean of 1 and standard deviation of 2. Additionally, a portion of the
generated dataset was distorted with noise: 1 %, 5 %, 10 %, 25 %, 50 %, 75 %, 90 % and finally 100 % of
the dataset was distorted along each dimension. In total, 9 case-control group pairs comprised our test
scenario, in which dissimilarities of all pairs were evaluated by NNI, GDI, and DDI. The result of the
evaluation can be seen in Table 1.

Table 1: DDI, NNI and GDI values for the 9 case-control group pairs. The presented values are
dissimilarities in the range of [0, 1]. The smaller the value, the more similar the given case and
control groups are.

Noise 0 % 1 % 5 % 10 % 25 % 50 % 75 % 90 % 100 %

NNI 0.000 0.009 0.043 0.085 0.214 0.426 0.645 0.772 0.851
GDI 0.000 0.004 0.019 0.038 0.096 0.192 0.291 0.347 0.385
DDI 0.000 0.003 0.008 0.015 0.036 0.054 0.080 0.091 0.097

As previously mentioned, NNI is the strictest measure, so it is especially sensitive to noise and dissimilar
data. The 0.851 dissimilarity value is a proof of that behaviour. It is important to mention, that total
dissimilarity (when the dissimilarity value is 1) is only achievable in extreme cases. These extreme cases
are where the compaired values are at the opposite ends of the range of the examined variable. The
statement about strict nature also holds for GDI, while DDI, the non-paired measure is noticably less
sensitive, reaching only 0.097 dissimilarity when the whole dataset is distorted.

Conclusion

Control group evaluation is a non-trivial task and the selected similarity measure greatly affects
the evaluation of research results. In this paper, we proposed 3 measures capable of evaluating the
similarity of case and control groups as n-dimensional data in contrast to traditional methods that apply
dimension reduction or estimation. All measures serve different purposes: DDI is recommended for
non-paired evaluation, while NNI and GDI are recommended for paired evaluation. While in the course
of scientific research analysts tend to consider only one criteria to evaluate the similarity of case and
control groups, this article points to the fact that it is worth considering several aspects together.
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