Benchmarking graph database backends : What works well with Wikidata?

Kovács, Tibor and Simon, Gábor and Mezei, Gergely: Benchmarking graph database backends : What works well with Wikidata? Conference of PhD Students in Computer Science, (11). pp. 163-166. (2018)

[img] Cikk, tanulmány, mű
cscs_2018_176-179.pdf

Download (191kB)

Abstract

Knowledge bases often utilize graphs as logical model. RDF-based knowledge bases (KB) are prime examples, as RDF (Resource Description Framework) does use graph as logical model. Graph databases are an emerging breed of NoSQL-type DBMSs (Database Management System), offering graph as the logical model. Although there are specialized databases, the so-called triple stores, for storing RDF data, graph databases can also be promising candidates for storing knowledge. In this paper, we benchmark different graph database implementations loaded with Wikidata, a real-life, largescale knowledge base. Graph databases come in all shapes and sizes, offer different APIs and graph models. Hence we used a measurement system, that can abstract away the API differences. For the modeling aspect, we made measurements with different graph encodings previously suggested in the literature, in order to observe the impact of the encoding aspect on the overall performance.

Item Type: Article
Event Title: Conference of PhD students in computer science (11.) (2018) (Szeged)
Journal or Publication Title: Conference of PhD Students in Computer Science
Date: 2018
Volume: 11
Page Range: pp. 163-166
Uncontrolled Keywords: Adatbázis-kezelés, Számítástechnika
Additional Information: Bibliogr.: p. 165-166. ; összefoglalás angol nyelven
Date Deposited: 2019. Nov. 04. 14:35
Last Modified: 2019. Nov. 04. 14:35
URI: http://acta.bibl.u-szeged.hu/id/eprint/61793

Actions (login required)

View Item View Item