
Graph-based analysis of Influence Spread

Viktor Homolya

Abstract: The influence maximization is a well-known problem in network science. This problem
is to target k nodes as seeds in a network G and maximize the spread of influence in this network.
Lots of models have been created for this problem and to find relatively good results is easy. From
the neighborhood of graph’s nodes we can define local optima in the influence maximization. We aim
to find connections between the structure of graph and the local optima for classifying the problem’s
difficulty for a given input graphs or to find properties that make easier the searching of nearly global
optimal results in huge networks.
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Introduction

The influence maximization is often used in viral marketing. In economy the problem can be inter-
preted as we have a limit for promoting (count of seeds) and we try to maximize the spread of informa-
tion about our product. The graph represent the community. As a social network, the graph does not
have multiple edges or loops. In our work the graph is directed (both way) for the different influences
between people.

We can defined local optima by neighborhood from the graph. From local optima we build a net-
work, the Local Optima Network (LON). With LON we map the codomain of original graph. We use
some network science node properties (e.g. betweenness centrality, closeness centrality) and basic graph
properties in special ways for the analysis.

This work made for find connections between the original graph and the created LON, which can be
help in the influence maximization problem. It’s not goal to optimize the problem by LON.

Influence maximization and models

The problem defined by Kempe et al. [1]. They showed the problem in the basic models (cascade
models and threshold models) which they considered is NP-hard. We worked with two simple models.

Independent Cascade model (IC): every edge has a parameter p (0 ≤ p ≤ 1) representing the prob-
ability of spreading over the edge. In an iteration a freshly influenced node tries to spread to the
(out)neighbors according to the edge parameter. In this model if a node v could not influence its neigh-
bor w in first time it can’t be anymore. If every influenced node can’t make new influenced node(s) the
model will stop.

Linear Threshold model (LT): every node and edge have a parameter t and w (0 ≤ t, w ≤ 1). The
t parameter is the node’s threshold value, w is the force of the influence via the edge. The sum of the
incoming edges’ w has to be less or equal than 1 for each node. A node v will be influenced in the
next iteration if the sum of influenced incoming edges’ w is bigger or equal than t value of v. The stop
condition is the same as IC’s.

In the work of Kempe et al. [1] the equivalence of IC models and LT models is proven. Hence, we
can use only one of these models. We made tests in both models and the LT proved to be slower. So
the bigger part of testing was made with IC models. From the stochastic nature of parameters a value
of seed set (’influence value’) came from average of influenced nodes’ quantity with R times repeated
evaluation.

Local Optima Network

We defined local optima from the neighborhoods of the nodes. A local optimum is a k sized subset
of nodes like every solution in this problem. From these local optima created a graph, the Local Optima
Network (LON). The LON approach was investigated for continuous optimization in [2], and for com-
binatorial optimization problems in [3]. Influence maximization belongs to the latter case, although we
need to introduce some changes and new definitions. Every detected local optimum is a node in the
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LON. Two nodes are connected in LON if the optimizer algorithm found them one after another. The
LON is a directed, weighted graph depends on the optimizer. This optimizer has to take consideration
the neighborhoods of nodes. We created a hill climbing algorithm for this task. This algorithm can tra-
verse the edges of LON multiple times during the building phase, and this is the reason why LON is a
weighted graph.

The stop condition of building is arbitrary. If we build LON for a long time we can perceive that
some nodes’ indegree is higher. We selected stop condition to find sufficient quantity of points with
high sum of indegree. The indegree in LON characterizes the basins of a local optimum. We dropped
the low weighted edges and the isolated nodes. With this filtering we created a connected graph. For
analyzing the spreading in the original graph G via the LON and the filtered LON (H) we defined some
measures like average of betweenness centrality of nodes from a seed set and neighbors of them in G.

In order to gain knowledge about the basins of the original problem we evaluated the closeness
centrality (CC) values of nodes of H graph. The reciprocals of weights of edges were the distances in
CC. With these CC values and the influence values we could classify the solvability a given problem to
be difficult or easy. The high influence valued points represent nearly global optimal results. The low
CC value means the point was hardly available for the hill climbing related algorithm. If we saw the
most of the high influence valued points have high CC values we graded this problem to easy. Every
created measure compare with influence value for find graph properties to make easier the optimization
in huge networks.
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