Boundedness in a quasilinear two-species chemotaxis system with consumption of chemoattractant

Zhang, Jing and Hu, Xuegang and Wang, Liangchen and Qu, Li: Boundedness in a quasilinear two-species chemotaxis system with consumption of chemoattractant. Electronic journal of qualitative theory of differential equations 31. pp. 1-12. (2019)

[img] Cikk, tanulmány, mű
ejqtde_2019_031.pdf

Download (436kB)

Abstract

This paper deals with a two-species chemotaxis system ut = ∇ · (D1(u)∇u) − ∇ · (uχ1(w)∇w) + µ1u(1 − u − a1v), x ∈ Ω, t > 0, vt = ∇ · (D2(v)∇v) − ∇ · (vχ2(w)∇w) + µ2v(1 − a2u − v), x ∈ Ω, t > 0, wt = ∆w − (αu + βv)w, x ∈ Ω, t > 0, where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω; χi(i = 1, 2) are chemotactic functions satisfying χ 0 i ≥ 0; the parameters µ1, µ2 > 0, a1, a2 > 0 and α, β > 0, the initial data (u0, v0) ∈ (C 0 (Ω))2 and w0 ∈ W1,∞(Ω) are non-negative. Based on the maximal Sobolev regularity, it is shown that this system possesses a unique global bounded classical solution provided that the logistic growth coefficients µ1 and µ2 are sufficiently large.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 31
Page Range: pp. 1-12
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2019.1.31
Uncontrolled Keywords: Matematikai modell, Differenciálegyenlet
Additional Information: Bibliogr.: p. 9-12. ; összefoglalás angol nyelven
Date Deposited: 2019. Sep. 27. 12:15
Last Modified: 2019. Sep. 27. 13:23
URI: http://acta.bibl.u-szeged.hu/id/eprint/62109

Actions (login required)

View Item View Item