Two solutions for a nonhomogeneous Klein–Gordon–Maxwell system

Wang, Lixia: Two solutions for a nonhomogeneous Klein–Gordon–Maxwell system. Electronic journal of qualitative theory of differential equations 40. pp. 1-12. (2019)

[img] Cikk, tanulmány, mű
ejqtde_2019_040.pdf

Download (418kB)

Abstract

In this paper, we consider the following nonhomogeneous Klein–Gordon– Maxwell system −∆u + V(x)u − (2ω + φ)φu = f(x, u) + h(x), x ∈ R3 ∆φ = (ω + φ)u 2 , x ∈ R3 where ω > 0 is a constant, the primitive of the nonlinearity f is of 2-superlinear growth at infinity. The nonlinearity considered here is weaker than the local (AR) condition and the (Je) condition of Jeanjean. The existence of two solutions is proved by the Mountain Pass Theorem and Ekeland’s variational principle.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 40
Page Range: pp. 1-12
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2019.1.40
Uncontrolled Keywords: Differenciálegyenlet
Additional Information: Bibliogr.: p. 10-12. ; összefoglalás angol nyelven
Date Deposited: 2019. Sep. 27. 13:30
Last Modified: 2019. Sep. 27. 13:30
URI: http://acta.bibl.u-szeged.hu/id/eprint/62118

Actions (login required)

View Item View Item