Joshi Vinayak Vishnupant and Kavishwar Shubhangi: z-ideals in lattices. In: Acta scientiarum mathematicarum, (85) 1-2. pp. 59-68. (2019)
Cikk, tanulmány, mű
math_085_numb_001-002_059-068.pdf Restricted to: SZTE network Download (179kB) |
Abstract
In this paper, we define z-ideals in bounded lattices. A separation theorem for the existence of prime z-ideals is proved in distributive lattices. As a consequence, we prove that every z-ideal is the intersection of some prime zideals. Lastly, we prove a characterization of dually semi-complemented lattices.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2019 |
Volume: | 85 |
Number: | 1-2 |
ISSN: | 2064-8316 |
Page Range: | pp. 59-68 |
Official URL: | http://www.acta.hu |
Related URLs: | http://acta.bibl.u-szeged.hu/62105/ |
DOI: | 10.14232/actasm-016-012-2 |
Uncontrolled Keywords: | Matematika |
Additional Information: | Bibliogr.: p. 67-68. ; összefoglalás angol nyelven |
Date Deposited: | 2019. Sep. 25. 09:50 |
Last Modified: | 2021. Mar. 25. 15:30 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/62133 |
Actions (login required)
View Item |