Grätzer, George A. and Lakser, Harry:
*Minimal representations of a finite distributive lattice by principal congruences of a lattice.*
Acta scientiarum mathematicarum, (85) 1-2.
pp. 69-96. (2019)

Cikk, tanulmány, mű
math_085_numb_001-002_069-096.pdf Hozzáférés joga: Campus Download (337kB) |

## Abstract

Let the finite distributive lattice D be isomorphic to the congruence lattice of a finite lattice L. Let Q denote those elements of D that correspond to principal congruences under this isomorphism. Then Q contains 0, 1 ∈ D and all the join-irreducible elements of D. If Q contains exactly these elements, we say that L is a minimal representation of D by principal congruences of the lattice L. We characterize finite distributive lattices D with a minimal representation by principal congruences with the property that D has at most two dual atoms.

Item Type: | Article |
---|---|

Journal or Publication Title: | Acta scientiarum mathematicarum |

Date: | 2019 |

Volume: | 85 |

Number: | 1-2 |

Page Range: | pp. 69-96 |

ISSN: | 2064-8316 |

DOI: | https://doi.org/10.14232/actasm-017-060-9 |

Uncontrolled Keywords: | Matematika |

Additional Information: | Bibliogr.: p. 95-96. ; összefoglalás angol nyelven |

Official URL: | http://www.acta.hu |

Date Deposited: | 2019. Sep. 25. 10:01 |

Last Modified: | 2019. Sep. 25. 10:01 |

URI: | http://acta.bibl.u-szeged.hu/id/eprint/62134 |

### Actions (login required)

View Item |