Dutta Gopal and Veeramani P.: Some renormings of Banach spaces with the weak fixed point property for nonexpansive mappings. In: Acta scientiarum mathematicarum, (85) 1-2. pp. 171-180. (2019)
Cikk, tanulmány, mű
math_085_numb_001-002_171-180.pdf Restricted to: SZTE network Download (178kB) |
Abstract
In 2013, Jiménez–Melado and Llorens–Fuster proved that the renorming of ℓ 2 , |x| = max{kxk2, p(x)}, where p is a seminorm on ℓ 2 satisfying certain conditions, has the weak fixed point property. In this paper, we generalize this result for a Banach space having normal structure and Schauder basis. From this, we derive that every Banach space having normal structure and Schauder basis has an equivalent renorming that lacks asymptotic normal structure but has the weak fixed point property.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2019 |
Volume: | 85 |
Number: | 1-2 |
ISSN: | 2064-8316 |
Page Range: | pp. 171-180 |
Official URL: | http://www.acta.hu |
Related URLs: | http://acta.bibl.u-szeged.hu/62105/ |
DOI: | 10.14232/actasm-017-339-4 |
Uncontrolled Keywords: | Matematika, Banach tér |
Additional Information: | Bibliogr.: p. 178-180. ; összefoglalás angol nyelven |
Date Deposited: | 2019. Sep. 25. 10:18 |
Last Modified: | 2021. Mar. 25. 15:30 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/62139 |
Actions (login required)
View Item |