Cooperative functioning of salicylic acid and phenylalanine ammonia lyase in barley plant challenged with spot blotch and powdery mildew diseases

Al-Daoude, A. and Al-Shehadah, E. and Shoaib, A. and Jawhar, M. and Arabi, M. I. E.: Cooperative functioning of salicylic acid and phenylalanine ammonia lyase in barley plant challenged with spot blotch and powdery mildew diseases. In: Acta biologica Szegediensis, (63) 1. pp. 31-36. (2019)

[img]
Preview
Cikk, tanulmány, mű
biologica_063_numb_001_031-036.pdf

Download (2MB) | Preview

Abstract

Salicylic acid (SA) and phenylalanine ammonia-lyase (PAL) have been suggested as important signals during plant resistance towards several fungal pathogens. In this work, to better understand the defense responses initiated by resistant and susceptible barley genotypes challenged with a necrotrophic (Cochliobolus sativus; Cs) and a biotrophic (Blumeria graminis; Bg) pathogens, the relative contributions of SA and PAL were investigated at early time points of infection. SA signaling was activated in both genotypes 24 hours post infection (hpi) as compared with the non-inoculated plants. However, with or without pathogen pretreatment, SA significantly increased (P = 0.001) in the resistant genotype that contained three-folds of total SA in comparison with the susceptible one for Bg. Reverse transcription-polymerase chain reaction (RTPCR) analysis revealed that PAL expression increases in the resistant and susceptible genotypes over the inoculation time points, with the maximum expression observed 48 hpi. PAL expression was paralleled by an increase in SA content in leaves as shown by the test coincidence (F3, 32 = 1.09, P = 0.49 for Cs and F3, 32 = 1.03, P = 0.48 for Bg). Results showed that the cooperatively function of SA and PAL in barley responses to both Cs and Bg appeared to be dependent on the plant genotype, and that SA signaling and PAL play a role in barley interactions with these both pathogens. This study might increase our understanding for a deeper molecular research on barley defense responses against pathogens with different lifestyles.

Item Type: Article
Journal or Publication Title: Acta biologica Szegediensis
Date: 2019
Volume: 63
Number: 1
ISSN: 1588-4082
Page Range: pp. 31-36
DOI: https://doi.org/10.14232/abs.2019.1.31-36
Uncontrolled Keywords: Növénytan, Biológia, Biotechnológia - növények, Biológia - molekuláris
Additional Information: Bibliogr.: p. 35-36. ; összefoglalás angol nyelven
Date Deposited: 2019. Nov. 21. 11:58
Last Modified: 2019. Nov. 21. 12:31
URI: http://acta.bibl.u-szeged.hu/id/eprint/62257

Actions (login required)

View Item View Item