The bifurcation of limit cycles of two classes of cubic isochronous systems

Shao Yi and Lai Yongzeng and A Chunxiang: The bifurcation of limit cycles of two classes of cubic isochronous systems. (2019)

[thumbnail of ejqtde_2019_050_001-015.pdf]
Preview
Cikk, tanulmány, mű
ejqtde_2019_050_001-015.pdf

Download (439kB) | Preview

Abstract

In this paper, we study the bifurcation of limit cycles of the periodic annulus of two classes of cubic isochronous systems. By using complete elliptic integrals of the first, second kinds and the Chebyshev criterion, we show that the upper bound for the number of limit cycles which appear from the periodic annuli of the two systems are at least three under cubic perturbations. Moreover, there exists a perturbation that give rise to exactly i limit cycles bifurcating from the period annulus for each i = 0, 1, 2, 3.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 50
ISSN: 1417-3875
Page Range: pp. 1-15
DOI: 10.14232/ejqtde.2019.1.50
Uncontrolled Keywords: Bifurkáció, Perturbáció
Additional Information: Bibliogr.: p. 14-15. ; összefoglalás angol nyelven
Date Deposited: 2019. Sep. 30. 08:51
Last Modified: 2021. Sep. 16. 10:42
URI: http://acta.bibl.u-szeged.hu/id/eprint/62274

Actions (login required)

View Item View Item